
 

 

Copyright Warning 

Use of this thesis/dissertation/project is for the purpose of 
private study or scholarly research only. Users must comply 
with the Copyright Ordinance. 
 
Anyone who consults this thesis/dissertation/project is 
understood to recognise that its copyright rests with its 
author and that no part of it may be reproduced without the 
author’s prior written consent. 
 



CITY UNIVERSITY OF HONG KONG 
香港城市大學 

 

 

 

 

Seasonal Prediction of Summertime Rainfall in South 

China using Multi-Model Ensemble Products 

利用多模式集合數據於華南地區作夏季降雨預測 

 

Submitted to 

School of Energy and Environment 

能源及環境學院 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Philosophy 

哲學碩士學位 

 

 

by 

 

 

Tung Ying Lut 

董應律 
 

 

 

 

 

 

 

August 2013 

二零一三年八月



i 
 

Abstract 

 

General circulation model (GCM)-based dynamical forecast systems are 

commonly used for seasonal predictions. Some large-scale dynamical vairables 

such as the mean sea level pressure, upper air temperature, zonal wind, etc., are 

well predicted. However, GCMs show very low skills in predicting some 

variables such as the local-scale precipitation. In order to interpolate the large-

scale climate information from GCMs to the regional scale, downscaling 

techniques based on either dynamical or statistical models need to be used. 

This research addresses this issue by using statistical schemes to 

downscale GCM-based seasonal forecast outputs for local-scale rainfall 

prediction over South China (SC) in boreal summer. Hindcast experiments from 

11 global models and their multi-model ensemble (MME) average were 

considered. Singular value decomposition analysis based on observed data 

showed that the precipitation variation over SC is strongly related to that in the 

mean sea level pressure (SLP) over Southeast Asia, the western north Pacific 

and Indian Oceans. Hence, SLP was chosen as the predictor for predicting the 

SC station-scale rainfall variations.  

A statistical downscaling scheme based on the “perfect prognosis” 

approach (PP), was first developed and evaluated. Based on the relationship 

between the observed SLP and observed station-scale precipitation using SVD 

analysis, a statistical scheme was constructed. Station-scale precipitation is then 
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predicted by replacing observations with model outputs for SLP, in the 

precipitation SVD reconstruction. Downscaling based on hindcast data of SLP 

from 11 GCMs and their MME average indicated that PP-based downscaling has 

difficulties in improving the rainfall prediction in central SC. In general, rainfall 

prediction based on PP downscaling outperforms the direct model output (DMO) 

at western SC for most model except BCC and NCEP. The exceptional models 

show improvement in eastern SC. However, the improvement of the PP-based 

downscaling is limited since the scheme is unable to correct systematic biases of 

GCMs.  

A similar SVD analysis was then repeated to obtain a statistical 

relationship between model SLP and the observed station precipitation. Results 

showed that there is also strong covariability between model hindcast SLP and 

observed station precipitation. Hence another downscaling approach, namely 

model output statistics (MOS), was adopted for predicting the SC station-

interpolated precipitation with model SLP as predictors.  

Compared with DMO, the improvement of rainfall prediction based on 

the MOS-type downscaling is limited in two distinct geographical locations. For 

first group of models (labelled as Type 1), improvement is mainly found in 

western SC near Guangxi. For second group of models (labelled as Type 2), 

improvement is mainly seen in the eastern coastal area. Further analysis revealed 

that dynamical models have difficulties in capturing the regional circulation 

details in SLP over SC, leading to erroneous prediction in some locations. The 

statistical method is able to map the large-scale circulation patterns to station-
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scale rainfall variations, thereby correcting some of the biases over land. To 

conclude, statistical downscaling helps to increase the prediction skill where 

DMO performs poorly.   



iv 
 

Acknowledgements 

 

I would like to express my heartfelt gratitude to my supervisor, Dr 

Francis Tam, for his kind guidance, continuous support and enlightening 

suggestions. This dissertation could not have been written so soon without his 

patient by spending lots of time with me. Thanks are extended to Prof. Jonny 

Chan and Dr. Wen Zhou for providing me constructive criticisms and insightful 

feedbacks.  

I greatly enjoy doing my research in School of Energy and Environment 

(SEE). I am very grateful to have met Mr. Ray Lee, Mr. Christopher Holst, Mr. 

Kunhui Ye, Ms. Glory Kwok, and Ms. Andie Au-yeung in our group meetings to 

exchange the opinion about my work. Thanks are also given to Mr. Kin Sik Liu, 

Mr. Kelvin Chan, Mr. Koon Chuen Szeto, Mr. Hoffman Cheung, Mr. Richard Li, 

Mr. Eric Chow, Mr. Marco Leung, Mr. Weiwen Wang, Ms. Xiuzhen Li, Mr. 

Chung Sing Lai, Dr. Judy Huang, Ms. Camilla Cheng, Mr. Samson Chiu, and 

Ms. Kit Ying Fung for their kindness and help at different stages of my work and 

study. Administrative work by Ms. Ada Au, Ms. Katie Chan, Ms. Michelle 

Wong, Ms. Po Ming Lee, Ms. Yee Ting Lee, Ms Ming Wai Yu, Chu, Ms. Alice 

Wong of SEE and Ms. Stephanie Chan of School of Graduate Studies are much 

appreciated.  

Throughout my study, I am also benefited from valuable comments by 

Dr. Micheal Leung, Dr. Wey Yang Teoh, Dr. Nicky Lam, Dr. Carol Lin. Dr. 

Patrict Lee, and Dr. Kenneth Chu of City University of Hong Kong. Discussions 



v 
 

with Dr. Soo-Jin Sohn, Dr. Jung-Lien Chu are constructive for improving my 

work. The author is a recipient of Research Studentship provided by the City 

University of Hong Kong. This dissertation is dedicated to my family and Ms. 

Pammy Li. I am indebted to my parents, friends for their encouragement and 

understanding.  



vi 
 

Table of Contents 

 

Table of Contents ............................................................................................... vi 

 

List of Acronyms .............................................................................................. viii 

 

List of Tables ....................................................................................................... x 

 

List of Figures ..................................................................................................... xi 

 

Chapter 1  Introduction .................................................................................. 1 

1.1 Background .................................................................................... 1 

1.2 Objectives ....................................................................................... 3 

1.3 Overview of thesis chapters ........................................................... 4 

 

Chapter 2  Literature review .......................................................................... 5 

2.1 Overview of the SC rainfall variability .......................................... 5 

2.2 Seasonal predictions using GCMs ................................................ 12 

2.3 Multi-Model Ensemble (MME) for seasonal predictions ............ 14 

2.4 Overview of downscaling ............................................................. 14 

2.5 Predictors for prediction ............................................................... 20 

2.6 Research motivations ................................................................... 20 

 

Chapter 3  Observations and model data .................................................... 22 

3.1 Study period and observational global datasets ........................... 22 

3.2 Experiments based on model hindcast data .................................. 23 

3.3 Station rainfall data ...................................................................... 25 

3.4 Linear trend .................................................................................. 26 

3.5 Spatial  interpolation of model rainfall output ............................. 27 

 



vii 
 

Chapter 4  Methodology ................................................................................ 29 

4.1 Empirical orthogonal function analysis ........................................ 30 

4.2 Statistical downscaling approach .................................................. 31 

4.3 “Leave-one-out” cross validation ................................................. 32 

 

Chapter 5  Spacetime Characteristics of SC summer rainfall variability 33 

5.1 EOF analysis of SC rainfall variability ......................................... 33 

5.2 Anomalous large-scale circulation associated with the leading 

EOFs based on linear regression ................................................... 37 

5.3 Composite circulation anomalies based on EOF analysis ............ 41 

5.4 Anomalous moisture flux divergence and wind divergence. ........ 43 

5.5 SVD analysis based on station rainfall and SLP/Z500. ................ 47 

5.5.1 SLP ................................................................................................ 48 

5.5.2 Z500 .............................................................................................. 55 

5.6 The impact of EOF truncation ...................................................... 60 

 

Chapter 6  SC rainfall prediction based on direct model output and 

statistical downscaling ................................................................ 62 

6.1 SC rainfall predictions based on direct model output ................... 63 

6.2 Prediction based on statistical downscaling (PP) .......................... 65 

6.3 SVD analysis based on observed SC rainfall and model SLP. ..... 71 

6.4 Predictions based on statistical downscaling (MOS) .................... 83 

6.5 Improvement in seasonal rainfall variation prediction ................. 87 

 

Chapter 7  Summary and discussions .......................................................... 98 

 

Bibliography ..................................................................................................... 105 

 



viii 
 

List of Acronyms 

 

AMIP-II Atmospheric Model Intercomparison Project 

APCC Asia-Pacific Economic Cooperation Climate 

Center 

APEC Asia-Pacific Economic Cooperation 

AO Arctic Oscilation 

BCC Beijing Climate Center 

BMRC Bureau of Meteorological Research Centre 

CFS NCEP Coupled Forecast System 

CMAP Climate Prediction Center Merged Analysis of 

Precipitation 

CPC Climate Prediction Center 

CWB Central Weather Bureau 

DEMETER Development of a European multi-model 

ensemble system for seasonal  

DMI Dipole mode index 

DMO Direct model output 

EASM East Asian summer monsoon 

ENSO El Niño/Southern Oscillation 

EOF Empirical orthogonal functions 

GCM General circulation models 

GCPS Global Climate Prediction System 

GDAPS Global Data Assimilation and Prediction System 

GDP Gross domestic product 

IOD Indian Ocean dipole 

JJA June, July and August 

KMA Korea Meteorological Administration 

MCA Maximum covariance analysis 

METRI AGCM Meteorological Research Institute Atmospheric 

General Circulation Model 

MME Multi-model ensembles 

MSC Meteorological Service of Canada 



ix 
 

MSC-GM2 Meteorological Service of Canada – second 

generation general circulation model 

MSC-GM3 Meteorological Service of Canada – third 

generation general circulation model 

MSC-SEF Meteorological Service of Canada – multilevel 

spectral primitive-equations model 

MOS Model output statistics 

NCAR National Center for Atmospheric Research 

NCEP National Centers for Environment Prediction 

NCEP-DOE National Centers for Environmental Prediction 

– Department of Energy 

NIMR Nation Institute of Meteorological Research 

PC Principal components 

PMME Operational Multi-model ensembles prediction 

system 

PNU Pusan National University 

POAMA Predictive ocean-atmosphere model for 

Australia  

PP Perfect prognosis 

SC South China 

SCS South China Sea 

SLP Sea level pressure 

SMIP/HFP Seasonal Model Intercomparison Project / 

Historical Forecast Project SST Sea surface 

temperature 

SNU Seoul National University 

SSTA Sea surface temperature anomaly 

SVD Singular value decomposition 

WNPMI Western north Pacific monsoon index 

WNPSM Western north Pacific summer monsoon 

Z500 Geopotential height at 500hPa 



x 
 

 

List of Tables 

 

Table 3-1.  Description of the model hindcast experiments used in this 

study. .......................................................................................... 23 

 

Table 5-1.  Correlation coefficient between time expansion coefficient of 

the leading SVD modes and climate indices for (a) rainfall 

and (b) SLP. ............................................................................... 53 

 

Table 5-2.  Same as Table 5-1 except for Z500. ......................................... 58 

 

Table 6-1.  Summary of the Type 1 and Type 2 model. ............................ 87 



xi 
 

 

List of Figures 

 

Figure 2-1.  Composite difference of summer rainfall (1979-1996) between 

strong and weak monsoon year respect to the WNPMI. 

Shading denotes region of difference at 95% confidence level. 

(From Wang et al., 2001) ............................................................ 8 

 

Figure 2-2.  Schematic diagrams showing the major circulation anomalies 

associated with a stong WNPSM. The lower-level (upper-level) 

circulation anomalies are denoted by solid (dashed) lines. 

(From Wang et al., 2001) ............................................................ 8 

 

Figure 2-3.  Circulation patterns at 850hPa in JJA over South Asia during 

positive IOD. (From Li and Mu, 2001) .................................... 10 

 

Figure 2-4.  Schematic diagram of the effects of boundary condition 

anomalies on large-scale atmospheric circulation. (From 

Shukla and Kinter 2006) ........................................................... 12 

 

Figure 2-5.  Conceptualization of downscaling of GCM products. (Ed 

Maurer, 2009) ............................................................................ 15 

 

Figure 2-6.  Leading SVD mode spatial patterns of (a) the observed 

station precipitation in northern Taiwan and (b) the observed 

Z500 in East Asia during JJA. (c) Normalized expansion 

coefficients corresponding to precipitation and Z500. Leading 

SVD mode spatial patterns of (a) the observed station 

precipitation in northern Taiwan and (b) the observed SLP in 

East Asia during JJA. (c) Normalized expansion coefficients 

corresponding to precipitation and SLP. (From Chu et al., 

2008) ............................................................................................ 19 

 

Figure 3-1.  Geographical locations of the 89 stations in SC. ..................... 26 

 



xii 
 

Figure 3-2.  An example illustrating the variability of SC rainfall. (a) The 

original anomalous rainfall for a particular station. (b) Same 

as (a) except  with the linear trend removed. ......................... 27 

 

Figure 4-1.  Flowchart of the research procedure. ..................................... 30 

 

Figure 5-1. Station precipitation (without units; normalized their 

corresponding square root of eigenvalue) corresponding to 

the (a) 1
st
 , (b) 2

nd
 and (c) 3

rd
  leading EOF. Upper right shows 

the percentage of explained variance for each EOF. ............. 34 

 

Figure 5-2.  Normalized PC time series for (a) 1
st
, (b) 2

nd
 and (c) 3

rd
 EOF 

mode. .......................................................................................... 36 

 

Figure 5-3.  Regression of (a) 850hPa wind (see scale arrow in upper right; 

units: ms
-1

) and SLP (contours in interval of 0.05 hPa, with 

negative values denoted by dashed lines), and (b) Z500 

(contours in interval of 0.01 hPa), based on the leading 

normalized PC time series of SC rainfall. Shading (arrows) 

denotes either SLP (850 wind) or Z500 signals significant at 

the 90% level. ............................................................................ 37 

 

Figure 5-4.  Same as Figure 5-3 except for regression based on PC2. ...... 39 

 

Figure 5-5.  Same as Figure 5-3 except for regression based on PC3. ...... 40 

 

Figure 5-6.  Composite maps for (a) SLP (contours in interval of 10 hPa) 

and (b) Z500 (contours in interval of 2.5 hPa) of the 2
nd

 EOF. 

Shading denotes SLP and Z500 signals significant at the 90% 

level. ............................................................................................ 42 

 

Figure 5-7.  Regression map of moisture flux divergent component 

(arrows) and its divergence (shading) based on (a) PC1, (b) 

PC2 and (c) PC3. ....................................................................... 45 

 



xiii 
 

Figure 5-8.  The dimensionless leading singular vector for (a) observed 

station precipitation and (b) SLP from observations based on 

SVD analysis. The fraction of squared covariance between 

two field explained by the leading mode is shown on upper 

right. (c) Normalized time series of the expansion coefficient 

for precipitation (solid line), SLP (dashed line). Upper left 

shows the correlation coefficient between SLP and SC rainfall.

 ..................................................................................................... 48 

 

Figure 5-9.  Same as Figure 5-8, except for the 2
nd

 singular vector. .......... 50 

 

Figure 5-10.  Same as Figure 5-8, except for the 3
rd

 singular vector. .......... 52 

 

Figure 5-11.  Same as Figure 5-8, except based on Z500 from observations.

 ..................................................................................................... 55 

 

Figure 5-12.  Same as Figure 5-11, except for the 2
nd

 singular vector. ........ 57 

 

Figure 5-14. The dimensionless leading singular vector for (a) station 

precipitation and (b) SLP based on SVD analysis with EOF 

truncation. .................................................................................. 60 

 

Figure 6-1.  Correlation coefficients between the JJA precipitation 

(exceeded 90% significance level) at station locations based on 

observations and the interpolated DMO of precipitation from  

(a) BCC (b) CWB (c) GCPS (d) GDAPS (e) MSC-GM2 (f) 

MSC-GM3 (g) MSC-SEF (h) NCEP (i) NIMR (j) PNU (k) 

POAMA, and (l) the MME average. The correlation 

coefficient averaged over all stations is provided in the bottom 

right corner. ............................................................................... 63 

 

Figure 6-2.  Same as Figure 6-1, except for predictions based on PP-type 

statistical downscaling. .............................................................. 67 

 

Figure 6-3.  Difference between Figures 6-1 and 6-2. ................................. 69 

 



xiv 
 

Figure 6-4.  The leading singular vector for precipitation, based on SVD 

analysis between observed station precipitation and model 

SLP from (a) BCC, (b) CWB, (c) GCPS, (d) GDAPS, (e) 

MSC-GM2, (f) MSC-GM3, (g) MSC-SEF, (h) NCEP, (i) 

NIMR, (j) PNU, (k) POAMA, and (l) the MME average. 

Upper right of each panel shows the fraction of squared 

covariance between station precipitation and model SLP 

explained by this SVD mode. ................................................... 72 

 

Figure 6-5.  Same as Figure 6-4 except for singular vectors for model SLP.

..................................................................................................... 73 

 

Figure 6-6. Normalized time series of the expansion coefficient for 

precipitation (solid line) and model SLP (dashed line) from (a) 

BCC, (b) CWB, (c) GCPS, (d) GDAPS, (e) MSC-GM2, (f) 

MSC-GM3, (g) MSC-SEF, (h) NCEP, (i) NIMR, (j) PNU, (k) 

POAMA, and (l) the MME average, corresponding to the 

leading SVD mode. Upper right of each panel shows the 

correlation between the two time series. ................................. 75 

 

Figure 6-7.  Same as Figure 6-4, except for the 2
nd

 SVD mode. ................ 76 

 

Figure 6-8.  Same as Figure 6-5, except for the 2
nd

 SVD mode. ................ 77 

 

Figure 6-9.  Same as Figure 6-6, except for the 2
nd

 SVD mode. ................ 78 

 

Figure 6-10.  Same as Figure 6-4, except for the 3
rd

 SVD mode. ................. 79 

 

Figure 6-11.  Same as Figure 6-5, except for the 3
rd

 SVD mode. ................. 80 

 

Figure 6-12.  Same as Figure 6-6, except for the 3
rd

 SVD mode. ................. 81 

 

Figure 6-13.  Same as Figure 6-1 except for predictions based on MOS-type 

statistical downscaling. ............................................................. 83 

 



xv 
 

Figure 6-14.  Difference between Figures 6-1 and 6-13. ............................... 85 

 

Figure 6-15.  Difference between the temporal correlation coefficients (a,b) 

and the MSSS (c,d) for DMO and MOS-type downscaled 

precipitation for Type 1, and Type 2 model ensemble average, 

respectively. ................................................................................ 88 

 

Figure 6-16.  Geographical locations of the selected stations comprising 

Zone 1 (squares) and Zone 2 (triangles). ................................. 89 

 

Figure 6-17.  Correlation coefficient for precipitation prediction average 

over (a) Zone 1, and (b) Zone 2, for different models, the 

MME average as well as Type 1 and Type 2 ensemble 

averages based on DMO (blue) and MOS-type statistical 

downscaling (red). ...................................................................... 90 

 

Figure 6-18.  Regression coefficients of the JJA mean (a,b) rainfall (units: 

mm/day), and (c,d) SLP (contours, in interval of 0.05 hPa) 

from (a,c) observatioins and (b,d) Type 1 model ensemble 

average based on the leading PC of the observed SC station 

rainfall. ....................................................................................... 92 

 

Figure 6-19.  Same as Figure 6-16, except for the second PC. ..................... 94 

 

Figure 6-20.  Same as Figure 6-16 except for regression coefficients based 

on the third PC for the observations and the Type 2 model 

ensemble average. ...................................................................... 96 



1 
 

Chapter 1  

Introduction 

 

1.1 Background 

 South China (SC) is a one of the regions with the fastest economic 

growth in China. Its total gross domestic product (GDP) per capital has 

increased by 160% to US$14000 in the past 15 years
1
. In addition, SC is facing a 

population explosion due to its fast development. However, its economy can be 

greatly affected by the occurrence of floods and droughts which can cause 

serious disasters. Since summer is the rain season for SC, predicting the summer 

precipitation is therefore of particular importance. If the summer precipitation 

can be well predicted, say a season ahead, a number of measures to remedy the 

loss due to floods or droughts can be prepared in advance.  

General circulation models (GCMs) are numerical models that use a set 

of mathematical equations for simulating the Earth’s climate. Nowadays, GCMs 

are widely applied for seasonal predictions. It is commonly accepted that the 

source of predictability is from the lower boundary of the atmosphere (i.e., 

conditions at the Earth’s surface). In particular, the lower boundary conditions 

vary in a much slower rate compared to the day-to-day variations of weather, 

and can cause a persistent influence on the large-scale atmospheric circulation. 

Therefore, the large-scale atmospheric variables averaged over time can be 

predictable to a certain extent. Although GCMs can well simulate large-scale 

variables such as the sea level pressure, geopotential, etc., (air-sea-coupled 

                                                           
1
 Estimation based on data from the NBS China Statistical DataBase. 
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GCMs can also reproduce atmosphere-ocean coupled variability of the climate 

system), some variables such as rainfall, especially that over land, are difficult to 

capture. This is especially the case in monsoon regions, because of the 

complexity of the monsoon system. Also, local land-sea contrasts and 

topography are not fully represented in low-resolution models. Hence, obtaining 

accurate rainfall predictions from dynamical seasonal forecast systems in the 

monsoon region is still a big challenge.   

 In view of the relatively low spatial resolution of GCMs adopted for 

seasonal forecasts, some other methods are needed to enhance the resolution and 

accuracy of model products. Downscaling refers to methods to interpolate the 

large-scale climate information from GCMs onto the regional scale. Generally, 

there are two types of downscaling methods: dynamical downscaling and 

statistical downscaling. In dynamical downscaling, high-resolution simulations 

are obtained by using a regional climate model, which is driven by large-scale 

variables from GCMs (Giorgi et al., 1990; Mearns et al., 1995). The cost of 

improving the spatial resolution of prediction products, however, is the large 

computational demand for running a regional model using this method. 

Statistical downscaling, on the other hand, is commonly used since it requires 

less computational resources. In this method, the empirical relationship between 

a local climate variable (the predictand) and GCM outputs is first determined 

(the predictor) (Zorita and von Storch, 1999; Wilby et al., 2004). Forecasts of the 

local variable are then produced by projecting predictor values from GCMs 

based on the corresponding statistical relationship. 
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1.2 Objectives 

 The primary motivation for this study is to understand the predictability 

of the summertime rainfall over the SC area. In addition, the SC rainfall 

variability related to various recurrent large-scale circulation patterns in the 

tropical Indo-Pacific region will also be analyzed. The specific objectives of this 

study are: 

1. To assess the skill of GCMs in predicting the summer rainfall over SC; 

2. To develop a statistical downscaling scheme to predict the summer 

rainfall over SC; and 

3. To assess and compare the skill of prediction results based on different 

statistical downscaling approaches. 

The results obtained from this study can serve as a background for further 

studies on seasonal prediction over SC for different seasons and for locations 

outside SC. 
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1.3 Overview of thesis chapters 

 There are seven chapters in this thesis. Chapter 1 gives an introduction of 

this research. In Chapter 2, a literature review of relevant studies is provided. 

Data used and methodology are described in Chapter 3 and Chapter 4, 

respectively. In Chapter 5, rainfall variability in summertime SC is analyzed by 

using empirical orthogonal functions (EOF), and the possible linkages between 

SC rainfall and other large-scale circulation patterns are revealed. Chapter 6 

describes the results from singular value decomposition (SVD) of station 

rainfall-large-scale circulation covariability, and gives an assessment of the 

prediction skill of station-scale rainfall in SC based on direct model outputs. The 

comparison between direct model outputs and two different statistical 

downscaling methods for rainfall prediction are presented. Finally, discussions, 

conclusion and suggestions for future studies can be found in Chapter 7. 
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Chapter 2  

Literature review 

 SC summer rainfall is affected by many different recurrent climate 

modes, such as the anomalous western north Pacific summer monsoon (WNPSM) 

activity, Indian Ocean Dipole (IOD), movement of the subtropical ridge and the 

El Nino Southern Oscillation (ENSO). This chapter begins with an overview of 

the SC rainfall variability (section 2.1). Seasonal predictions using different 

dynamical models and the multi-model ensemble average are given in sections 

2.2 and 2.3, respectively. In section 2.4, two different statistical downscaling 

schemes based on the perfect prognosis (PP) and the model output statistics 

(MOS) approaches are briefly introduced. Criteria for selecting different 

predictors for statistical downscaling of rainfall are presented in section 2.5. The 

last section states the research motivations of this study.  

2.1 Overview of the SC rainfall variability 

Severe floods or droughts often occur in summer over SC. For instance, 

excessive rainfall occurred in the region during the summer of 1997. In fact, 

precipitation over SC exhibits complex space-time structures, and its interannual 

variability can be related to various climate modes recurrent in tropical (such as 

ENSO, WNPSM and IOD) as well as extratropical locations (e.g., the Artic 

Oscillation).  

El Nino refers to the warm sea surface temperature anomaly (SSTA) in 

the equatorial Pacific Ocean, whereas “Southern Oscillation” is the atmospheric 

component that is tied to El Nino. When ENSO occurs, positive SSTA in the 



6 
 

equatorial Pacific warms the lower troposphere and consequently affects the sea 

level pressure (SLP), which brings about large-scale circulation anomalies. 

Trenberth (1997) indicated that ENSO activity can be detected by monitoring 

SSTA over the “Nino 3 region” of 5°N-5°S, 90°-150°W. Wang (1995) described 

the El Nino onset and its evolution, and found that anomalous westerlies in the 

western equatorial Pacific are established in conjunction with the enhancement 

of the anomalous low-level cyclone over the Philippines Sea in boreal summer. 

ENSO can cause extreme weather (i.e. floods and droughts) in many regions of 

the world. In particular, the impact of ENSO on the precipitation in SC has been 

investigated by a number of researchers. Below-average rainfall over the region 

was found during the El Nino mature phase (Huang and Wu, 1989; Zhang et al., 

1999; Feng and Hu, 2004). Such rainfall anomalies are caused by the intensified 

western Pacific subtropical high which covers SC (Zhang et al., 1999). In 

addition to the intensity, the location of the subtropical high is another factor that 

results in the anomalous rainfall in SC. Huang and Wu (1989) stated that the 

negative rainfall anomalies are due to the anomalous southward movement of 

the subtropical high. They also discovered that SSTA is negative in the western 

tropical Pacific, and convective activities are weak over the South China Sea 

(SCS) in the developing stage of ENSO in boreal summer. 

Negative rainfall anomaly in SC is observed when the East Asian 

summer monsoon (EASM) intensifies (Zhang et al., 1996; Zhang et al., 1999). 

Ding et al. (2008) showed that the summer precipitation in SC has increased in 

recent decades, which can be attributed to the weakening of the EASM. They 
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also found that when the EASM is weak, stronger moisture convergence is found 

in the latitudinal range from Yangtze River (30°N) to SCS, supplying more 

abundant moisture in the region.  

WNPSM is an oceanic monsoon driven primarily by the meridional 

gradients of SST (Murakami and Matsumoto 1994; Li and Wang 2005). 

WNPSM has three main characteristics: (1) a northwest-southeast oriented 

monsoon trough with heavy precipitation; (2) low-level southwesterlies; and (3) 

upper-tropospheric easterlies. Murakami and Matsumoto (1994) defined the 

western north Pacific region between 10°-20°N from 120° to 150°E as the core 

domain of the WNPSM. Wang and Lin (2002) further refined the definition of 

the WNPSM domain based on the onset, peak, and withdraw characters of 

climatological rainfall over WNPSM region.  

Anomalous WNPSM is one major contributor to the summer SC rainfall 

variability. Wang et al. (2001) indicated that the summer rainfall increases from 

SC area to north Pacific during strong WNPSM (Figure 2-1). Figure 2-2 shows 

that the typical strong WNPSM circulation feature: alternative anomalous 

cyclone and anti-cyclone along 20°N and 35°N respectively, coupled with the 

increment of summer rainfall in SC area. Wang et al. (2001) also defined a index 

for WNPSM, namely the Western North Pacific Monsoon Index (WNPMI), 

which is the difference of 850hPa zonal wind between the southern domain of 

5°-15°N, 100°-130°E and the northern domain of 20°-30°N, 110°-140°E. Finally, 

WNPSM was also found to be associated with ENSO activity. Wang et al. (2001) 
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discovered that a strong (weak) WNPSM tends to follow the occurrence of the 

mature phase of cold (warm) ENSO. 

 

Figure 2-1. Composite difference of summer rainfall (1979-1996) between 

strong and weak monsoon year respect to the WNPMI. Shading denotes 

region of difference at 95% confidence level. (From Wang et al., 2001) 

 

 

Figure 2-2. Schematic diagrams showing the major circulation anomalies 

associated with a strong WNPSM. The lower-level (upper-level) circulation 

anomalies are denoted by solid (dashed) lines. (From Wang et al., 2001) 
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Besides the aforementioned climate activities, those in the Indian Ocean 

such as IOD can also affect the variability of SC summer rainfall. The feature of 

IOD is that SSTA is robustly coupled to wind anomaly in the equatorial Indian 

Ocean (Saji et al., 1999; Saji and Yamagata 2003). IOD activity can be 

monitored by measuring the difference of SSTA between the western domain of 

10S-10N, 50E-70E and the south eastern domain of 10S-0N, 90E-110E over the 

equatorial Indian Ocean. This difference is called the dipole mode index (DMI). 

Positive (negative) IOD is identified when the DMI value is positive (negative).  

Guan and Yamagata (2003) used the National Centers for Environment 

Prediction (NCEP) National Center for Atmospheric Research (NCAR) 

reanalysis data from 1979 to 2001, and the Climate Prediction Center (CPC) 

Merged Analysis of Precipitation (CMAP) precipitation data from 1979 to 1999 

to investigate the unusual summer of 1994 due to IOD events. Their results 

demonstrated that positive IOD is at least one plausible cause of surplus rainfall 

in SC, which is consistent with many studies (Xiao et al., 2002; Li and Mu, 2001; 

Ashok et al., 2001). This rainfall anomaly in SC accompanies an anomalous 

cyclonic circulation extending westward from the tropical western Pacific to the 

southern part of China. Xiao et al. (2002) found that the Walker circulation and 

the Indian summer monsoon tend to be weakened by the anomalous easterly in 

equatorial Indian Ocean when IOD was positive, while at the same time these 

features increase the summer precipitation in SC. Xiao et al. (2002) also pointed 

out that the East Asian trough appears to be weaker and the subtropical ridge 

extended more southward, leading to more precipitation in SC. Li and Mu (2001) 
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indicated that SC summer rainfall tends to increase when the anticyclone over 

the Tibet and the subtropical high are weakened during positive IOD. The 

typical anomalous circulation pattern at 850hPa during positive IOD in JJA is 

shown in Figure 2-3. During positive IOD, there is an accompanying anomalous 

low-level cyclone in SC, which can be conducive to more rainfall in the region. 

Finally, the Indian Ocean variability associated with ENSO was investigated by 

Zhong et al. (2005). They studied the causes of SSTA features in the equatorial 

Indian Ocean consistent with IOD during El Nino. In order to initiate IOD, it 

seems that ENSO needs to be developed early enough, for example before boreal 

summer.  

 

Figure 2-3. Circulation patterns at 850hPa in JJA over South Asia during 

positive IOD. (From Li and Mu, 2001) 

The Arctic Oscillation (AO; Thompson and Wallace, 1998), also referred 

to as the Northern Hemisphere annular mode, is a large-scale mode of climate 
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variability with strong signatures over the north hemisphere extratropics. AO is 

characterized by westerlies in the Arctic at around 55°N, and can occur in the 

positive or negative phases. Positive AO leads to stronger than normal westerly 

wind that confines colder air in the polar region. In contrast, polar colder air is 

able to penetrate southward because of weakened westerlies in the negative 

phase of AO. AO is strongest in winter and it significantly affects mid- to high- 

latitude climate during the cold season.  

Thompson and Wallace (2000) also noted that AO can influence the 

atmospheric circulation during the warm season as well. In recent years, many 

studies investigated the impact of AO on the rainfall variability over East Asia. 

Gong and Ho (2003) discovered a relationship between AO and EASM. They 

showed AO in May has the strongest connection to the summer rainfall in China. 

Gong and Ho (2003) also suggested the mechanism connecting the late spring 

AO activity and the summer rainfall. Gong et al. (2011) further investigated the 

impact of the connection between the spring AO activity and EASM on the 

western north Pacific circulation. Anomalous cyclonic circulation at 850 hPa in 

southeastern Asia and the western North Pacific occurs after the spring AO. The 

subtropical high is weaken by those anomalous circulations in such areas, 

leading to positive anomalous rainfall in the region of southern China to western 

north Pacific.  
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2.2 Seasonal predictions using GCMs  

Many studies in the past decades showed that the sense of seasonal 

predictability lies in lower boundary conditions (e.g. SSTA, heat flux, moisture 

flux, etc.). Fennessy et al. (1985) conducted a sensitivity experiment to examine 

the effects of SSTA in the equatorial Pacific. Their results suggested that 

variations of the seasonal climate are predictable given that anomalies in the 

lower boundary are properly incorporated.  

 

Figure 2-4. Schematic diagram of the effects of boundary condition 

anomalies on large-scale atmospheric circulation. (From Shukla and Kinter 

2006) 

Figure 2-4 illustrates how the boundary condition (say, SSTA) can affect 

the large-scale circulation via a complex mechanism. At the beginning, 

anomalous SST alters the sensible and latent fluxes from ocean to atmosphere, 
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changing the surface temperature and humidity, and consistently, the surface 

pressure gradient in the atmosphere. Then the surface pressure gradient changes 

the low-level atmospheric convergence. When the latter changes, the moisture 

flux convergence will be affected directly, especially in the tropics. This 

phenomenon plays a critical role in driving tropical convection, which in turn 

can affect the large-scale circulation. In other words, the boundary condition is 

important in driving climate variations. It is widely believed that atmospheric-

GCM, with imposed lower boundary conditions, are able to simulate the large-

scale atmospheric circulation. One good example is the skilful SLP prediction in 

the tropical Atlantic and Pacific (Rodwell, 1998).  

In contrast, GCMs encounter difficulties in capturing the regional-scale 

climate signals, especially in the monsoon region. It is because the complexity of 

the monsoon system makes it hard to have skilful predictions. Kang et al. (2002) 

evaluated the prediction of summer monsoon rainfall variation from 10 GCMs 

over the Asian-Western Pacific region. They found that most of the models fail 

to reproduce the monsoon rainfall in the region from East China Sea to the mid 

Pacific in summer. Ajayamohan (2007) also found a similar result that GCMs 

have difficulties in simulating the rainband in SCS and the western north Pacific. 

Yang et al. (2008) found that the NCEP climate forecast system underestimates 

the strength of the monsoon circulation in Asian continent. Therefore, 

modifications of models or other additional post processing of model data (e.g. 

MME approach and downscaling) would be needed to achieve a more reliable 

regional-scale circulation prediction.      
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2.3 Multi-Model Ensemble (MME) for seasonal predictions 

A single-model ensemble prediction is a prediction derived from the 

average of a number of predictions under different initial conditions using the 

same model, thus uncertainties in the initial condition are incorporated in the 

prediction. However, the single-model ensemble does not provide any reduction 

in the systematic and random component in the model errors (i.e. model 

dependent uncertainties), hence, the prediction skill is limited. Krishnamurti et al. 

(1999) and Doblas-Reyes et al. (2000) provided evidence that the prediction skill 

based on the MME approach is higher than that of individual models because of 

its taking into account model dependent uncertainties. Nowadays, the MME 

approach is used for seasonal predictions in a number of operational centers.  

The MME hindcast experiment datasets at the Asia-Pacific Economic 

Cooperation (APEC) Climate Center (APCC) has been developed for seasonal 

predictions and were used in many studies. Sohn et al. (2011) studied the 

variability and predictability of East Asian winter climate and assessed the 

performance of the APCC MME. Min et al. (2009) developed an operational 

MME prediction system (PMME) based on the APCC MME. It was found that 

PMME have a skilful prediction in temperature and precipitation in tropics. 

2.4 Overview of downscaling 

GCMs often show difficulties in providing a skilful regional-scale 

simulation due to their coarse resolution. Grotch and McCracken (1991) 

indicated that erroneous temperature and precipitation predictions in finer spatial 

scales were produced using GCMs. In order to resolve finer-scale variability, 
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various methods of downscaling have been developed. Figure 2-5 shows the 

conceptualization of downscaling of coarse-resolution GCM products. Here, 

downscaling techniques are necessary to provide high-resolution information of 

variables such as the local-scale precipitation- which is usually not well-resolved 

in GCMs. 

  

Figure 2-5. Conceptualization of downscaling of GCM products. (Ed 

Maurer, 2009)  
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Downscaling can be categorized into two major methods: dynamical and 

statistical. The former involves the use of (nested) limited area models with 

progressively higher spatial resolution that can account for more of the 

geographical features than in the GCM (Wilby and Wigley, 1997). The 

disadvantage of dynamical downscaling is that it requires a lot of storage space 

and computing resources. Also, this approach requires much time to obtain a 

higher resolution prediction for each individual model. Therefore, it is less 

flexibility and not readily transferred to other regions. 

 Statistical downscaling entails the extraction of information about 

statistical relationship between the large-scale climate variables and the local 

climate variables. Compared to the dynamical method, it requires less 

computational demand for obtaining local-scale information of meteorological 

variables. Perfect prognostic (PP) and model output statistics (MOS) are 

developed and commonly used in many studies. In the PP approach, a statistical 

relationship is developed by using observed large-scale atmospheric parameters 

(predictor) and observations of the predictand (Klein et al., 1959). Note that this 

method makes use of (stable) statistical relationships from observations and is 

independent of the GCM data. Only historical climatological data is used for 

developing a PP equation (Wilks 1995). Williams (1961) showed that there was 

a significant improvement of the 2-day forecasts in Utah using the PP statistical 

downscaling approach, while Shafer and Fuelberg (2008) developed a PP-based 

statistical downscaling scheme for forecasting warm-season lightning over 
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Florida. However, the PP scheme assumes a “perfect” forecast of the predictors 

by GCMs, and any model biases from the GCMs are not considered.  

In contrast to PP, in MOS statistical relationships are derived using 

observed local predictands and outputs for large-scale variables from GCMs. 

One of the advantages of MOS is that, by construction, the developed statistical 

downscaling relationship has already taken the model biases into account. This is 

also the reason why MOS is often preferred for incorporating GCM data into 

local prediction (Wilks 1995).  Maraun et al. (2010) reviewed and evaluated PP 

as well as MOS. They showed that in MOS biases in the GCM simulations are 

automatically corrected (see also Widmann et al., 2003). Brunet et al. (1988) 

also compared PP and MOS in the context of numerical weather forecasts. They 

concluded that PP (MOS) had higher skill scores for shorter (longer) range 

prediction.  

Both PP and MOS approaches can be applied for other statistical 

downscaling tools such as regression method and weather pattern (circulation)-

based method. Wilby and Wigley (1997) reviewed those statistical downscaling 

tools. Regression method is the earliest downscaling tool. In general, this tool 

involves linear or non-linear relationship between large-scale variables and 

regional-scale predictands. Multiple linear regression is one of the methods to 

find the regression links between multi-predictors and predictand. This method 

was employed in Liu et al. (2011). The AO Index (see Thompson and Wallace, 

2000), 500hPa geopotential height, 850hPa humidity, and sea surface 

temperature, with input data taken from the Development of a European Multi-
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model Ensemble System for Seasonal to Interannual Prediction (DEMETER) 

project, are used as the predictors for predicting the southeast China rainfall (Liu 

et al., 2011). They found that the skill in predicting the summer precipitation in 

southeast China is increased compared to direct model output.  

Weather pattern (circulation)-based downscaling method is also used to 

identify the physical linkages between observations and large-scale variables. 

This tool can well simulate large-scale variables from the model and observed 

precipitation characteristics (Wilby and Wigley, 1997). A number of studies 

showed this pattern-based downscaling can also be used for rainfall prediction. 

Chu et al. (2008) investigated the potential of predicting local precipitation over 

northern Taiwan using downscaling of large-scale circulation variables from 

GCMs. In their study, the relationships between local precipitation and observed 

Z500/SLP were first revealed by using SVD analysis. Figure 2-6 gives spatial 

patterns for the first SVD mode using station precipitation and Z500 as input 

data, and those using precipitation and SLP. It can be seen that the suppressed 

rainfall over northern Taiwan is coupled with negative anomalies over Japan and 

Korea and positive anomalies over Taiwan and SC in both Z500 and SLP. This 

indicated that there are the physical connections between local rainfall and 

Z500/SLP. Similar analysis was repeated to reveal the statistical relationships 

between local precipitation and Z500/SLP from GCMs. These statistical 

relationships were then used to develop a statistical downscaling scheme for 

rainfall predictions. The results demonstrated that useful regional climate 

information can be obtained from downscaling using large-scale variables from 
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coarse-resolution GCM outputs. Chu and Yu (2010) investigated the use of the 

SVD method to downscale regional precipitation over Yunlin County in Taiwan. 

They also noted that precipitation over such area is closely related to the large-

scale circulation over the East Asian monsoon region. Wang and Guan (2007) 

revealed the relationship between rainfall over China and air-sea interactions in 

the Indian Ocean using SVD analysis. 

 

Figure 2-6. Leading SVD mode spatial patterns of (a) the observed station 

precipitation in northern Taiwan and (b) the observed Z500 in East Asia 

during JJA. (c) Normalized expansion coefficients corresponding to 

precipitation and Z500. Leading SVD mode spatial patterns of (a) the 

observed station precipitation in northern Taiwan and (b) the observed SLP 

in East Asia during JJA. (c) Normalized expansion coefficients 

corresponding to precipitation and SLP. (From Chu et al., 2008) 
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2.5 Predictors for prediction 

Several key conditions need to be satisfied in order for a variable to be 

chosen as predictor. Two of them are presented here. First, the predictors should 

be well reproduced by GCMs so that it can be used for statistical downscaling 

(Wilby et al., 2004). The second condition is that the relationship between the 

predictors and predictands should remain stable. Cavazos (1999) and Wetterhall 

et al. (2005) used SLP as a predictor and found that the prediction skill of the 

seasonal mean precipitation was enhanced using statistical downscaling. Zhu et 

al. (2008) used Z500 to develop a statistical scheme to predict the summer 

rainfall anomaly in Asia-Pacific region. This downscaling scheme is found to 

have potential for improving the forecast skill of precipitation in SCS. Referring 

to Chu et al. (2008), the seasonal rainfall prediction was more stable and skilful 

when using the averaged of Z500- and SLP-based downscaling predictions. 

Besides SLP and Z500, other predictors were also used for predicting the local-

scale rainfall, such as the relative vorticity (Wilby et al., 1998) or even 

precipitation itself (Widmann et al., 2003) from coarse-resolution models. 

2.6 Research motivations 

Many previous studies have indicated linkages between SC rainfall 

variability and various anomalous climate activities such as ENSO, WNPSM, 

IOD and even EASM. Studying these linkages between SC rainfall variability 

and the different anomalous climate activities are important for explaining how 

these activities affecting SC rainfall. It also helps to understand the origin of 

anomalous rainfall variability in SC. 
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In many studies, it was suggested that the statistical downscaling may 

enhance the seasonal prediction using data from GCMs. Chu et al. (2008) found 

that useful climate information could be obtained from statistical downscaling 

using the large-scale variables from coarse-resolution GCM products. These 

findings motivate this study for developing a statistical scheme to predict the 

summertime rainfall in SC using MME products. Moreover, we will assess and 

compare the prediction skill based on MOS and PP and try to indicate the 

limitations of statistical downscaling. 
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Chapter 3  

Observations and model data 

 

 This chapter mainly describes the data sets being used for this study. It 

begins with the study period and describes the observational global datasets in 

section 3.1. After that, descriptions about GCM hindcast data and station data 

are given in sections 3.2 and 3.3, respectively. The method of removing the 

potential impacts of decadal change is described in section 3.4. Finally, the 

spatial interpolation method is delineated in section 3.5, which was applied for 

comparison between results based on direct model output (DMO) and various 

statistical downscaling methods. 

3.1 Study period and observational global datasets 

The study period includes 21 June-July-August (JJA) seasons from 1983 

to 2003. National Centers for Environmental Prediction – Department of Energy 

(NCEP-DOE) Atmospheric Model Intercomparison Project (AMIP-II) 2.5° 

latitude by 2.5° longitude gridded reanalysis datasets within this period were 

considered (R-2; Kanamitsu et al., 2002). The gridded mean sea-level pressure, 

geopotential height at 500 hPa (Z500) and wind 850hPa were used as 

observational data in this study.  
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3.2 Experiments based on model hindcast data 

Institute Model Resolution Ensemble 

Size 

Experimental 

Type 

Reference 

Bureau of 

Meteorological 

Research 

Centre (BMRC) 

Predictive 

Ocean-

Atmosphere 

Model for 

Aus.(POAMA) 

T47 L17 10 CMIP Zhong et 

al. [2005] 

Meteorological 

Service of 

Canada (MSC) 

MSC-GM2 T32 L10 10 SMIP/HFP McFarlanc

e et al. 

[1992] 

Meteorological 

Service of 

Canada (MSC) 

MSC-GM3 T63 L32 10 SMIP/HFP Scinocca 

et al. 

[2008] 

Meteorological 

Service of 

Canada (MSC) 

MSC Spectral 

Primitive Eqt. 

Model   

(MSC-SEF) 

T95 L27 10 SMIP/HFP Ritchie 

[1991] 

Beijing Climate 

Center (BCC) 

BCC  CGCM T63 L16 8 CMIP Ding et al. 

[2000] 

Korean 

Meteorological 

Administration 

(KMA) 

Global Data 

Assimilation 

and Prediction 

system 

(GDAPS) 

T106 L21 20 SMIP/HFP Park et al. 

[2002] 

National 

Institute of 

Meteorological 

Research 

(NIMR) 

Meteorological 

Research 

Institute AGCM 

5ºx4º L17 10 SMIP/HFP Back et al. 

[2002] 

Pusan National 

University 

(PNU) 

PNU CGCM T42 L18 5 CMIP Sun and 

Ahn 

[2011] 

Seoul National 

University 

Global Climate 

Prediction 

System (GCPS) 

T63 L21 12 SMIP/HFP Kang et al. 

[2004] 

Central 

Weather Bureau 

(CWB) 

CWB AGCM T42 L18 10 SMIP/HFP Liou et al. 

[1997] 

National 

Centers for 

Environmental 

Prediction 

(NCEP) 

NCEP Climate 

Forecast 

System (CFS) 

T62 L64 15 CMIP Saha et al. 

[2006] 

Table 3-1. Description of the model hindcast experiments used in this study.
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The models that are examined are the 11 climate models participating in 

the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) multi-

model ensemble (MME) seasonal forecasting. Table 3-1 gives a description of 

the hindcast experiments. The experimental types are those consistent with the 

Seasonal Model Intercomparison Project/Historical Forecast Project (SMIP/HFP) 

or the Coupled Model Intercomparison Project (CMIP). The former type of 

historical forecasts include those from the Canadian Climate Centre second 

(McFarland et al., 1992) and third generation general circulation models 

(Scinocca et al., 2008), and also the multilevel spectral primitive-equations 

model (Ritchie, 1991) of the Meteorological Service of Canada (MSC), the 

Global Data Assimilation and Prediction System (GDAPS) of the Korea 

Meteorological Administration (KMA) (Park et al., 2002), Meteorological 

Research Institute Atmospheric General Circulation Model (METRI AGCM) of 

the Nation Institute of Meteorological Research (NIMR)(Back et al., 2002), the 

Global Climate Prediction System (GCPS) from the Seoul National University 

(SNU), Korea (Kang et al., 2004), and the second generation global forecast 

system at the Central Weather Bureau (CWB) in Taiwan (Liou et al., 1997). The 

latter type of experiments are those from the Predictive Ocean-Atmosphere 

model for Australia (POAMA) of Bureau of Meteorology Research Center 

(BMRC), Australia (Zhong et al., 2005), the coupled general circulation model 

(CGCM) of the Beijing Climate Center (BCC), China (Ding et al., 2000), the 

first version of Pusan National University (PNU) CGCM, Korea (Sun and Ahn, 
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2011), and the NCEP Coupled Forecast System (CFS) (Saha et al., 2006). The 

common model hindcast period of 1983 to 2003 was considered. For each set of 

models run, historical predictions for JJA were initialized in May with slightly 

different initial conditions for each member in the ensemble integrations. Finally, 

meteorological variables including SLP, Z500 and the 850 hPa winds from each 

individual models as well as their MME averages, which are defined as the un-

weighted averages of output from all models, were also used. All model hindcast 

data were interpolated on a 2.5º x 2.5º regular grid.  

3.3 Station rainfall data 

The raw station data consist of daily precipitation records for the period 

of 1980-2004. They are obtained from 250 stations in China within the domain 

of 16°-30°N, 85°-125°E. In this study, only stations within the SC area of 18°-

28°N, 105°-120°E, coving Guangdong, Hainan, Fujian, Jiangxi, Guizhou Hunan 

provinces as well as Guangxi, Hong Kong and Macau, were considered. Also, 

stations were discarded whenever there are missing values for one day or more 

in JJA during the whole 21-year study period. As a result, 89 stations in the SC 

region remained. Finally, only JJA mean precipitation data within the 1983-2003 

period (which is the same as the common hindcast period) were used. 
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Figure 3-1. Geographical locations of the 89 stations in SC. 

Figure 3-1 shows the geographical locations of the 89 stations considered 

in this study. It is seen that the resulting spatial distribution of stations is quite 

uniform and on average there are about one to two stations with each 1° x 1° 

sub-domain. 

3.4 Linear trend 

In order to focus on the interannual variability of SC rainfall, the removal 

of any long-term-trend in summer rainfall is necessary. It is because a long-term 

increase of summer rainfall can create a significant impact on the dominant 

patterns of anomalous summer rainfall in China (see Ye and Lu, 2012). Figure 3-

2 shows the rainfall time series before and after removing the linear trend for a 

particular station location.   
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Figure 3-2. An example illustrating the variability of SC rainfall. (a) The 

original anomalous rainfall for a particular station. (b) Same as (a) except  

with the linear trend removed. 

From Figure 3-2a, there is an obvious increasing trend in the observed 

summer rainfall record. This is the common feature of all stations in SC. The SC 

rainfall increase from 1979 has also been reported by other researchers (Ye and 

Lu, 2012), which can be related to a decadal change in precipitation since late 

1970s. After removing the linear trends in the JJA mean rainfall as well as the 

gridded reanalysis and hindcast data, the influence on the decadal or long-term 

change can be minimized (Figure 3-2(b)). The removal procedures were similar 

to those of Niu and Li (2008). 

3.5 Spatial  interpolation of model rainfall output 

The precipitation prediction based on DMO from GCM is for a regular 

grid whereas the observation (and downscaling prediction) for rainfall is 

measured (targeted) at station locations. Hence, it is difficult to compare DMO 

with observations (or downscaling results). In order to overcome this difficulty, 
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spatial interpolation of data (Chu and Yu, 2010), is necessary. In this study, the 

models’ precipitation data are interpolated onto station locations, by computing 

a weighted average of precipitation value from the surrounding nine grid points 

for each station. Here the weighing factor is derived from the ratio of the 

distance between the centre of a particular grid and the station locations to the 

sum of distances of the nine grids and that station. If the grid-to-location 

distance is less than 10 km, however, then the model output is simply taken as 

the value at the station location. The advantage of this method is that the 

interpolated station data from GCM is more representative than the 

corresponding stations obtained by other linear interpolation methods (such as 

bilinear interpolation and nearest-neighbour interpolation).   
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Chapter 4  

Methodology 

 

 In this chapter, the method of statistical downscaling rainfall prediction 

based on large-scale circulation variables from GCM will be explained. The 

flowchart in Figure 4-1 gives an outline of the research procedure of this study. 

In section 4.1, EOF analysis is introduced which was applied for identifying 

recurrent atmospheric circulation features associated with summer SC rainfall 

variability. The procedure of SVD analysis for downscaling is explained in 

section 4.2. Finally, the “leave-one-out” cross-validation method is outlined 

briefly in section 4.3. 

 

 

 



30 
 

 

Figure 4-1. Flowchart of the research procedure.  

 

4.1 Empirical orthogonal function analysis 

EOF analysis (Lorenz, 1956; Bjornsson and Venegas, 1997) is 

commonly used in meteorological research. The first application of EOF 

analysis for rainfall was conducted by Stidd (1967). Here, EOF analysis is 

applied to the anomalous precipitation data at 89 stations in JJA in order to 

obtain the recurrent precipitation patterns during the research period. Generally, 

eigenvectors are sorted according to the amount of variance explained. Rainfall 

patterns with the largest fluctuations are emphasized. Note that all eigenvectors 

patterns are specified up to a multiplication constant. In other words, the signs of 
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eigenvector patterns are arbitrary. Although the EOF patterns may provide some 

clues for the physical relationship between, say, the regional of large-scale 

circulation and SC rainfall, it should be noticed that the patterns themselves do 

not necessarily correspond to any physical modes.   

4.2 Statistical downscaling approach 

SVD (also referred to as maximum covariance analysis, or MCA; see 

Bretherton et al. 1992; Widmann, 2005; Tippett et al., 2008) provides an 

efficient way to diagonalize a rectangular matrix. It is a generalization of the 

diagonalization procedure that is performed in principal component analysis to 

matrices that are not square of symmetric. SVD of the cross-covariance matrix 

identifies, from, two data fields, pairs of spatial patterns that explain as much as 

the mean-squared temporal covariance between two field. SVD is also a method 

for providing better exposure of various relationships among the original data 

items through transforming correlated variables into a set of uncorrelated ones. 

In this study (following that of Chu et al., 2008), SVD was employed in 

order to unveil any relationship between variability in the station precipitation 

and that in the large-scale circulation.  The large-scale variable which has strong 

covariability with the SC regional precipitation (predictand) was chosen as the 

predictor. Both the anomalous large-scale variables and station precipitation can 

be expanded according to SVD as follows: 

……………………...………………. (1) 

…………..……………………. (2) 
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Here the anomalous Predictor(t,x) and Precipitation(t,x) are normalized with unit 

standard deviation. N is the total number of SVD modes. Predictor i(x) and Pi(x) 

denote the singular vectors for the i
th

 SVD mode, while Ri(t) and Qi(t) are the 

time expansion coefficients corresponding to the predictor and precipitation, 

respectively. Finally, for downscaling prediction, the following transfer function 

is used: 

………………………… (3) 

In other words, precipitation prediction is downscaled by multiplying the 

precipitation singular vectors with the corresponding predictor expansion 

coefficients. In this study, 18 SVD modes were used in reconstructing the 

station-scale precipitation. 

 

4.3 “Leave-one-out” cross validation 

The final stage is to evaluate the skill of the downscaling prediction 

method by applying cross-validation. It involves the prediction of a single year 

precipitation, with the specific target year excluded from the training period 

based on which the statistical prediction scheme was constructed. This procedure 

was repeated for every single year and the precipitation prediction was then 

validated based on observations. 
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Chapter 5  

Spacetime Characteristics of SC summer rainfall variability 

 Before we develop a statistical scheme for downscaling, EOF analysis is 

applied on the observed precipitation data. EOF analysis is used to investigate 

the variability of summer rainfall in SC due to the contribution of the dominant 

rainfall patterns. To begin, the first three leading rainfall patterns and the 

corresponding principal components (PC) obtained by EOF analysis are 

described in section 5.1. Next, the anomalous large-scale circulation associated 

with the leading EOFs based on regression is examined in section 5.2. In section 

5.3, composite circulation anomalies based on EOF analysis is presented. The 

anomalous moisture flux divergence component and its divergence are studied in 

section 5.4. In addition, we also used SVD analysis to unveil the modes of 

covariability between precipitation and large-scale variables in section 5.5. The 

impact of EOF truncation on the SVD results is discussed in section 5.6. 

5.1 EOF analysis of SC rainfall variability 

 Using the observed precipitation at station locations, EOF analysis using 

covariance matrix was carried out and the first three leading EOFs are shown in 

Figure 5-1. (Please note that all the trends in rainfall data are removed before 

applying EOF analysis). Figure 5-1a shows that the first EOF is characterized by 

rainfall anomalies of the same sign (negative open circles) over most of the SC 

region. Strong precipitation anomalies are confined in coastal locations. This 

leading pattern explains about 36.4% of the domain-integrated precipitation 

variance over SC. 
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Figure 5-1. Station precipitation (without units; normalized their 

corresponding square root of eigenvalue) corresponding to the (a) 1
st
 , (b) 

2
nd

 and (c) 3
rd

  leading EOF. Upper right shows the percentage of explained 

variance for each EOF. 
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The second EOF for precipitation is shown in Figure 5-1b. It can be seen 

that rainfall anomaly along coastal SC gives an opposite sign compared to that 

over the more inland locations in western SC. of. Note that there are some 

relatively strong rainfall anomalies in the inland part of SC. This pattern explains 

about 12.8% of the total variance of SC rainfall. 

The third EOF pattern, which accounts for about 10.4% of the rainfall 

variance, is shown in Figure 5-1c. A southwest-northeast rainfall dipole is found. 

Other EOFs account for less than 10% of the variance; they are not considered in 

this study. Principal components (PCs) corresponding to the EOFs were also 

calculated. Normalized PC time series (i.e., those divided by their corresponding 

standard deviations) are shown in Figure 5-2. From the observed rainfall record, 

lesser-than-normal rainfall is found in year 1989 whereas heavier-than-normal 

rainfall is found in year 1994 in SC. This characteristics of SC rainfall is also 

found in PC1 (Figure 5-2a); in particular there is a peak in year 1989 whereas 

1994 gives a minimum in the PC1 time series. Based on the figure, the time 

series of PCs reverse their sign for every 1-2 years, indicative of variability on 

the inter-annual timescale. On the other hand, there is no obvious decadal change 

or short-term trend in the EOF products. 

Next, other large-scale variables such as SLP, 850hPa wind and Z500 are 

regressed based on these normalized PCs to understand how the large-scale 

variables affecting SC rainfall variation.  
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Figure 5-2. Normalized PC time series for (a) 1
st
, (b) 2

nd
 and (c) 3

rd
 EOF 

mode.  
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5.2 Anomalous large-scale circulation associated with the leading EOFs 

based on linear regression 

 

Figure 5-3. Regression of (a) 850hPa wind (see scale arrow in upper right; 

units: ms
-1

) and SLP (contours in interval of 0.05 hPa, with negative values 

denoted by dashed lines), and (b) Z500 (contours in interval of 0.01 hPa), 

based on the leading normalized PC time series of SC rainfall. Shading 

(arrows) denotes either SLP (850 wind) or Z500 signals significant at the 

90% level. 
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In this section, regression maps for SLP, 850 hPa wind and Z500 are 

used to investigate the relationship between large-scale variables and the leading 

EOFs. Figure 5-3a shows the regression map of SLP based on PC1 of SC rainfall. 

In the figure, positive anomalous SLP associated with anomalous anti-cyclonic 

flow which passed the 90% significance level are observed over SC and 

IndoChina. Besides, along-shore wind off Sumatra and anti-cyclone in SC are 

observed. Although our findings do not repeat the results presented by Li and 

Mu (2001; see their Figure 2-3), a resemblance with the anomalous circulation 

typical of IOD events can be discerned. From Figure 5-3b, large-scale positive 

anomalous Z500 covers Bay of Bengal and SC, which is consistent with the SLP 

map (Figure 5-3a). Suppressed rainfall given by the leading EOF is seen to be 

associated with the presence of the high pressure system over SC. Later, a 

moisture budget analysis will be presented in order to understand the effect of 

anomalous moisture transport on SC rainfall. 
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Figure 5-4. Same as Figure 5-3 except for regression based on PC2. 

Regression maps of SLP and Z500 based on PC2 are shown in Figures 5-

4a and 5-4b, respectively. Negative SLP anomalies are observed over SCS and 

the western north Pacific. Meanwhile, positive anomalous SLP is found over the 

northwest SC and south of Japan. Moreover, a large-scale low-level cyclone is 

seen over the western north Pacific. Such anomalous large-scale circulation 

patterns are very similar to those related to WNPSM activity described by Wang 

et al. (see their Figure 2-2). At the same time, large-scale negative (positive) 

anomalous Z500 is located in SCS (south Japan).  
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Figure 5-5. Same as Figure 5-3 except for regression based on PC3. 

Figures 5-5a and 5-5b show the regression map of SLP and Z500 onto 

PC3, respectively. There is a weakened subtropical high (passing the 90% 

significance level) from Taiwan to the western north Pacific in the surface to the 

mid-troposphere. This weakened subtropical high signal extends to northeast SC 

and hence affects the precipitation there. Next, SC precipitation variability is 

investigated and discussed. 
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5.3 Composite circulation anomalies based on EOF analysis 

Composite circulation anomalies can also help us to have a better 

understanding of the relationship between the large-scale circulation and the 

rainfall EOF pattern. Here the composite maps are computed by taking the 

difference between the value of a particular variable averaged overs the positive, 

and those over negative extreme years. An extreme year for a particular EOF 

mode is defined as (1) the year in which the absolute value of the corresponding 

PC is largest among the first 3 PCs; and (2) at the same time the absolute value 

of the normalized PC is greater than 1 (meaning that its variation is larger than 

its corresponding standard deviation). These extreme years are further classified 

into positive and negative extremes according to sign of the corresponding PCs. 

From Figure 5-2a, it can be seen that there are 6 extreme years for the leading 

EOF; they are 1989, 1990, 1994, 1995, 1997 and 2001. For the 2
nd

 EOF, the 

extreme years are 1985, 1988, 1993, 1996 and 1998 (see Figure 5-2b); and those 

for the 3
rd

 EOF are 1991, 2000, 2002 and 2003 (see Figure 5-2c). Next, the value 

of the large-scaled variables such as SLP and Z500 in these extreme years will 

be extracted and calculated to obtain composites for the corresponding EOF 

modes. 
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Figure 5-6. Composite maps for (a) SLP (contours in interval of 10 hPa) and 

(b) Z500 (contours in interval of 2.5 hPa) of the 2
nd

 EOF. Shading denotes 

SLP and Z500 signals significant at the 90% level. 
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Figures 5-6a and 5-6b show the composite maps of SLP and Z500 

corresponding to the 2
nd

 EOF, respectively. As shown in Figure 5-6a, the large-

scale negative anomalous SLP which passed the 90% significance level is found 

over SC and the western north Pacific. At the same time, positive SLP anomalies 

are observed over Japan. Anomalous easterlies (westerlies) can be inferred over 

the region of 20°-30°N, 110°-140°E (5°-15°N, 100°-130°E), which are 

indicative anomalous WNPSM activity. Figure 5-6b shows negative anomalous 

Z500 which exceeded 90% significance level at SC extending to western north 

Pacific and IndoChina. Overall, these composite maps are consistent with the 

regression results presented earlier (see Figure 5-4). The composite maps 

corresponding to the 1
st
 and the 3

rd
 EOF extreme years are not shown, since the 

signals are not statistically significant. The low significance is due to the fact 

that only a few extreme years could be extracted from the research period to 

obtain the composite maps.  

 

5.4 Anomalous moisture flux divergence and wind divergence. 

A moisture budget analysis can shed light on how precipitation variation 

is related to the anomalous circulation. In particular, the moisture budget 

equation (Prixoto and Oort, 1991) can be derived from the equation: 

 

where 
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 , 

with u,v and ω representing the zonal, meridional and pressure velocity, 

respectively, whereas q indicates the specific humidity; S represents the 

difference between the sources and the sinks of water vapour following air 

parcel motion. The column-integrated value of S is given by E-P, where E (P) is 

the local evaporation (precipitation) rate. Thus,  

 

where  is the vertically integrated mean total moisture flux. For seasonal 

means, the storage term  is usually negligible compared to the other terms. 

Hence, the moisture flux divergence can be simply written as  

 

Based on the moisture flux equation, if the precipitation is larger (smaller) than 

the evaporation, the L.H.S of the equation be negative (positive) implying 

convergence (divergence) of . The analysis can therefore help to illustrate the 

moisture transport and its relationship with precipitation and evaporation in SC.  
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Figure 5-7. Regression map of moisture flux divergent component (arrows) 

and its divergence (shading) based on (a) PC1, (b) PC2 and (c) PC3. 
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Figure 5-7 shows the regression map of the anomalous moisture flux 

divergent component (arrows) and its divergence (shading) onto the 

corresponding PCs. The regression map based on PC1 is shown in Figure 5-7a. 

It can be seen that the anomalous divergence of moisture flux is observed over 

SC. Together with Figure 5-3a, result indicates that water vapour is transported 

away from the SC area when an anomalous high is present with same region. As 

a result, suppressed rainfall is observed over SC area.  

For the regression pattern based on PC2, anomalous moisture flux 

convergence is found over the coastal part of SC (Figure 5-7b). Such anomalous 

convergence of the moisture flux over SC and SCS is consistent with the surplus 

precipitation in the coastal area. From the regression map onto PC3 (Figure 5-

7c), anomalous moisture flux is found to be convergent over Taiwan and the 

western north Pacific. Thus there is convergence of moisture transport associated 

with the anomalous low-level cyclone in the region (see Figure 5-5). These 

anomalous circulation features are conclusive to surplus rainfall over northeast 

SC.   
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5.5 SVD analysis based on station rainfall and SLP/Z500. 

In the previous sections, the dominant modes of SC rainfall variability 

were found by using EOF analysis. Applying regression analysis, the 

relationship between large-scale variables and the leading rainfall EOFs was also 

obtained. In this section, SVD analysis is carried out in order to find out the 

covariability between SC rainfall and the large-scale flow. Based on the previous 

results, the domain for analysis is chosen to be the region of 10ºS-35ºN and 60º-

180ºE for the large-scale circulation variable. Results of SVD analysis are 

presented in subsections 5.5.1 and 5.5.2.  
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5.5.1 SLP 

 

Figure 5-8. The dimensionless leading singular vector for (a) observed 

station precipitation and (b) SLP from observations based on SVD analysis. 

The fraction of squared covariance between two field explained by the 

leading mode is shown on upper right. (c) Normalized time series of the 

expansion coefficient for precipitation (solid line), SLP (dashed line). Upper 

left shows the correlation coefficient between SLP and SC rainfall. 
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The patterns associated with the first SVD mode for the observed station 

precipitation and observed SLP are shown in Figure 5-8. This mode explains 

about 58% of the squared covariance between station rainfall and SLP. Large-

scale negative SLP anomalies are observed not only at Hainan to IndoChina, but 

also in the western north Pacific. Meanwhile, positive anomalous SLP is found 

over the northwest SC, southern Japan and the Indian Ocean to Indonesia. 

Associated with the anomalous SLP, positive rainfall anomalies (solid circles) 

are found at the coastal and east SC, whereas negative rainfall anomalies (open 

circles) are found over the northwest SC. Thus, the placement of the positive 

(negative) anomalous SLP and the suppressed (enhanced) rainfall in SC are 

consistent with each other. In addition, notice that the rainfall and SLP patterns 

of the leading SVD mode are similar to the 2
nd

 EOF of precipitation (Figure 5-1b) 

and the corresponding regression map of SLP (Figure 5-4a), respectively. These 

circulations are also consistent with the schematic diagram of WNPSM which 

shows an anticyclone over the Japan and cyclone over western north Pacific. 

Based on these findings, it is suggested that this SVD mode is related to the 

anomalous WNPSM activity. 

The normalized expansion coefficients for the station rainfall and SLP 

corresponding to this leading mode are given in Figure 5-8c. It is noteworthy 

that the two time series are highly correlated (with a correlation coefficient of 

0.77), meaning that SC rainfall is strongly coupled with large-scale SLP in the 

Indo-Pacific region.  
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Figure 5-9. Same as Figure 5-8, except for the 2
nd

 singular vector. 
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The second set of SVD patterns are shown in Figure 5-9. This mode 

accounts for about 18% of the squared covariance. As shown in Figure 5-9a, 

negative anomalous rainfall is found over the northwest inland part of SC 

whereas positive rainfall anomalies are observed along the coastal area and over 

the Hainan Island. The suppressed rainfall in SC is accompanied by positive 

anomalous SLP covering SC and Indochina (Figure 5-9b). Different from the 

leading SVD, this set of second SVD patterns of rainfall and SLP are similar to 

the leading EOF for rainfall (Figure 5-1a) and also the SLP regressed onto PC1, 

respectively. Figure 5-9c presents the time expansion coefficient of the station 

rainfall and SLP corresponding to the second SVD. The correlation between 

these two time series is about 0.62.  
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Figure 5-10. Same as Figure 5-8, except for the 3
rd

 singular vector. 
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Figure 5-10 shows the anomalous rainfall and SLP associated with the 

third SVD mode, the latter of which accounts for about 10% of the rainfall-SLP 

squared covariability. It shows positive (negative) anomalous precipitation at the 

northeast (southwest) part of SC (Figure 5-10a). This mode suggests a 

connection between a northeast-to-southwest dipole precipitation pattern over 

SC and the anomalous SLP with a centre of action at Taiwan/western north 

Pacific (Figure 5-10b). Note that the third SVD mode patterns also resemble the 

3
rd

 EOF for rainfall (Figure 5-1c) and the corresponding SLP regression map 

(Figure 5-5a). The correlation between the rainfall and SLP expansion 

coefficients for this mode is 0.66. 

Correlation coefficient  (a) Rainfall (b) SLP 

Between leading SVD 

mode &  

WNPMI 

0.67 0.89 

Between 2
nd

 SVD mode 

& DMI 

-0.54 -0.52 

Between 3
rd

 SVD &  

Nino 3 index 

0.21 0.53 

Table 5-1. Correlation coefficient between time expansion coefficient of the 

leading SVD modes and climate indices for (a) rainfall and (b) SLP. 

Table 5-1 shows a summary of correlation between SLP expansion 

coefficient time series for the leading SVD modes and a number of climate 

indices, namely WNPMI, DMI and the Nino 3 index. It has been seen that the 

SLP pattern for the leading SVD mode is very similar to the anomalous 

WNPSM SLP feature (see Figures 5-8b and 2-3). Moreover, both time series for 

rainfall and SLP are highly correlated to WNPMI, implying that the leading 

SVD is related with the anomalous WNPSM activity.  
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The second SVD mode seems to be related to IOD although the along-

shore wind off Sumatra is difficult to infer from Figure 5-9b. Notice that the 

time expansion coefficient of SLP and rainfall are both negative correlated to 

DMI during JJA (with correlation coefficient of -0.52 and -0.54, respectively, 

passing the 95% significance level). In other words, positive anomalous rainfall 

is found when DMI is positive, and vice versa, which is consistent with precious 

studies (see, e.g. Xiao et al., 2002). Finally, the time expansion coefficient of 

SLP for the third SVD mode is found to be correlated with Nino3 index, with a 

correlation of 0.53 (which passes the 95% significance level). It means that the 

SLP pattern is related to ENSO, which plays a role in affecting the local SC 

rainfall. 
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5.5.2 Z500 

 

Figure 5-11. Same as Figure 5-8, except based on Z500 from observations.  
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In addition to SLP, SVD analysis based on station rainfall in SC and 

Z500 is also carried out. The results of the leading SVD patterns for the 

observed precipitation and Z500 are shown in Figure 5-11. This mode explains 

about 72% of rainfall-Z500 squared covariability, which is higher than that using 

SLP. Large-scale negative anomalous Z500 is located in the northern tropical 

region (0°-30°N) (Figure 5-11b). Besides, positive anomalous Z500 are observed 

in Japan, again consistent with that expected for anomalous WNPSM activity 

(i.e., an anti-cyclone at the 500hPa level over Japan). Associated with these 

anomalous Z500 signals, positive (negative) rainfall anomalies are found over 

the east coastal (northwest) SC. Again, this leading precipitation singular vector 

and the 2
nd

 EOF pattern are very similar (Figure 5-1b). Notice that rainfall in SC 

is also strongly coupled with the large-scale Z500 since the normalized 

expansion coefficients for these two variables are highly correlated, with a 

correlation coefficient of 0.75 (Figure 5-11c). 
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Figure 5-12. Same as Figure 5-11, except for the 2
nd

 singular vector. 
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Patterns for the 2
nd

 SVD mode based on Z500 and station rainfall are 

shown in Figure 5-12; the correlation coefficient between expansion coefficients 

is 0.65. The 2
nd

 SVD mode explains about 15% of the squared covariance of 

rainfall and Z500.  As shown in Figure 5-12a, negative rainfall anomalies are 

observed over SC, consistent with the SVD result based on SLP (Figure 5-9a) 

and similar to the leading rainfall EOF (Figure 5-1a). 

Besides, large-scale positive anomalous Z500 is observed in SC and it 

extends to the western north Pacific (Figure 5-12b). In the Z500 regression map 

based on PC1, very similar positive Z500 anomaly is also found (Figure 5-3b). It 

implies that negative rainfall anomalies are accompanied by a positive 

geopotential height anomaly. This finding agrees with that given by Li and Mu 

(2001) during positive IOD, suggesting a linkage between IOD activity and this 

SVD mode. (Note that the 2
nd

 SVD mode expansion coefficients are 

significantly correlated with DMI; see Table 5-2)  

For the 3
rd

 SVD mode, positive (negative) anomalous rainfall is observed 

in northeast (southwest) SC (figure not shown). This mode explains about 5% of 

the rainfall-Z500 squared covariability, meaning that it is physically 

meaningless.  

Correlation coefficient  (c) Rainfall (d) Z500 

Between leading SVD &  

WNPMI 

0.74 0.62 

Between 2
nd

 SVD &  

DMI 

-0.53 -0.53 

Table 5-2. Same as Table 5-1 except for Z500. 
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Table 5-2 shows a summary of the correlation between expansion 

coefficient time series for SVD analysis based on Z500 and various climate 

indices. From the table, it is seen that the leading SVD mode is closely 

associated with anomalous WNPSM activity because the expansion coefficients 

are highly correlated with WNPMI.  

The 2
nd

 SVD mode is also related to IOD. The correlation between the 

expansion coefficients (for both rainfall and Z500) and DMI is about -0.5 

(passing 95% significance level). In other words, this SVD pattern is negative 

correlated to positive IOD. To conclude, the precipitation in SC is related to 

three prominent Indo-Pacific climate phenomena namely anomalous WNPSM, 

IOD and ENSO.  
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5.6 The impact of EOF truncation 

 

Figure 5-13. The dimensionless leading singular vector for (a) station 

precipitation and (b) SLP based on SVD analysis with EOF truncation.  

In this section, the impact of EOF filtering on the results of SVD analysis 

is examined. The advantage of the EOF filtering method is to reduce the 

“climate noise” of input data before applying SVD analysis. Notice that part of 

the information in the original input field will be lost after EOF truncation. 

Figure 5-13 shows the leading SVD mode of the station rainfall and observed 

SLP with EOF truncation. Comparing this to the result shown in Figure 5-8, it 
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can be seen that the impact of EOF filtering on the SVD results is insignificant. 

Both give positive rainfall anomalies in the coastal area and negative rainfall 

anomalies at northwest SC (see Figure 5-8a and 5-13a. Meanwhile, negative 

anomalous SLP is located in the regions of Vietnam and IndoChina for the 

leading SVD mode. To conclude, since noise removal (EOF truncation) does not 

cause significant differences, no EOF truncation was applied before carrying out 

the SVD analysis in this study.  
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Chapter 6  

SC rainfall prediction based on direct model output and statistical downscaling  

 

In Chapter 5, the dominant rainfall patterns in SC have been determined 

using EOF analysis. It has found that the variability of SC rainfall is associated 

with the large-scale circulation anomalies over Indo-Pacific region, which in 

turn can be linked with the anomalous WNPSM activity, IOD and ENSO. 

Moreover, the relationship between anomalous rainfall in SC and the observed 

large-scale circulation (as revealed by SLP and Z500 anomalies) has also been 

obtained through employing SVD analyses. In this chapter, SVD analysis is used 

again to develop a statistical scheme for rainfall prediction in SC based on model 

SLP as predictor. The SC rainfall prediction based on DMO is presented and 

evaluated in section 6.1. Next, the performance of the PP-based downscaling 

scheme is evaluated in section 6.2. SVD analysis is applied again for obtaining 

the relationship between SC rainfall and model SLP in section 6.3, and MOS-

based downscaling prediction is presented and evaluated in section 6.4. Finally, 

how statistical downscaling can enhance SC rainfall prediction in certain 

locations is examined in section 6.5. 
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6.1 SC rainfall predictions based on direct model output  

 

Figure 6-1. Correlation coefficients between the JJA precipitation (exceeded 

90% significance level) at station locations based on observations and the 

interpolated DMO of precipitation from  (a) BCC (b) CWB (c) GCPS (d) 

GDAPS (e) MSC-GM2 (f) MSC-GM3 (g) MSC-SEF (h) NCEP (i) NIMR (j) 

PNU (k) POAMA, and (l) the MME average. The correlation coefficient 

averaged over all stations is provided in the bottom right corner. 
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Before evaluating the performance of models in predicting the local SC 

rainfall, rainfall predictions based on DMO were first spatially interpolated onto 

each station location (see section 3.5). The correlation between the observed and 

DMO precipitation at 89 stations which passed 90% significance level is shown 

in Figure 6-1. The 89-station averaged correlation coefficient is also shown at 

the bottom right of each panel. Most models show skilful rainfall predictions 

(with correlation of at least 0.35) over coastal SC locations, especially in Hainan 

Island and the Pearl River Delta Region; however, rainfall prediction with 

negative correlation is also found in western SC. This result indicates that most 

models do not have outstanding skills in rainfall prediction in the western part of 

SC. The exceptions are the hindcasts from BCC and NCEP, which, however, 

show negative correlation in eastern or eastern-to-central SC.  

For the MME average, it gives the highest skill score as measured by the 

averaged correlation coefficient over all stations, compared to each individual 

model. It is noteworthy that the skill of MME average in some western SC 

locations remains low (not passing 90% significance level), meaning that that the 

MME technique cannot increase the skill in this particular sub domain. This 

might be related to the low skill of individual models (and probably low variance) 

in this region; this can strongly affect the skill of the MME average. In other 

words, if most models fail to simulate the rainfall in the western part of SC, then 

it is likely that MME will also present a low skill in this area. 
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6.2 Prediction based on statistical downscaling (PP) 

After examining the results from the SVD analysis between observed 

rainfall and various large-scale variables (from observations and models), a 

suitable predictor had been selected. The time series of the expansion coefficient 

for precipitation are highly correlated to those for SLP and Z500. In particular, 

we found that SLP has stronger covariability with the SC regional-scale 

precipitation. Hence, SLP is chosen as the predictor for statistical downscaling 

(for details please see section 6.3).  

In this section, a PP-based dowscaling scheme is developed based on the 

relationship deduced between the reanalysis SLP data and the observed station 

rainfall. Repeating the equations described in section 4.2, both the anomalous 

observational SLP, station precipitation and the rainfall prediction can be 

expanded as follows:  

……………………...………………. (4) 

………….…………………………….. (5) 

…………………..…(6) 

Here the anomalous SLP(t,x) and precipitation(t,x) are normalized to unit 

standard deviation, and SLP
obs

i(x) and Pi(x) represent the singular vectors for the 



66 
 

i
th

 SVD mode. To develop a prediction scheme using model output as the 

predictor, the expansion coefficient of SLP, i.e. Ri(t), is estimated as follows: 

 

  ……………........................................... (7) 

where SLP
model

 represents the anomalous SLP from the dynamical models, and 

SLP
obs

i represents the singular vector of observed SLP for the i
th

 SVD mode. In 

other words, the rainfall prediction in SC is obtained by multiplying each 

singular vector of observed precipitation with R
new

i(t) which is based on 

projecting SLP
model

 onto the i
th

 observed SLP singular vectors. Thus in the PP-

based downscaling prediction, the statistical relationship is obtained completely 

from observations while using model SLP as predictor.  Finally, the PP-based 

rainfall predictions are validated based on a “leave-one-out” cross validation 

process. 
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Figure 6-2. Same as Figure 6-1, except for predictions based on PP-type 

statistical downscaling. 
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The cross-validated correlation coefficients between the PP-based 

rainfall predictions and observed station rainfall are shown in Figure 6-2. The 

89-station averaged correlation is presented at the bottom right of each panel. It 

shows that the PP-based predicted rainfall performs better than DMO in certain 

locations, and this is especially the case for BCC and CWB. For BCC, the PP-

based downscaling leads to 20 stations over the eastern part of SC with 

correlation coefficient of at least 0.35, while DMO leads to only 8 stations. 

Similarly, for CWB, PP downscaling improves the correlation coefficient from 

about 0.5 to 0.7 in the western part of SC. For the rest of the models, correlation 

coefficients of ~ 0.35 to 0.55 are obtained, showing improvements over west and 

northwest SC. The maximum correlation coefficient of 0.7 at some station 

locations can be reached in three models (CWB, NCEP and POAMA) after 

downscaling.  
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Figure 6-3. Difference between Figures 6-1 and 6-2. 
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Figure 6-3 shows the difference between the correlation coefficients 

given by DMO and those from the PP-based statistical downscaling. It indicates 

that the rainfall prediction and the 89-station averaged correlations are slightly 

improved after applying the PP-based downscaling for BCC and POAMA. In 

BCC, a remarkable improvement (with difference passing the 90% significance 

level as estimated using the Fisher transform; see Kenny 1946) over the 

eastern/coastal part of SC is obtained whereas the correlation coefficient in 

POAMA in western SC is improved significantly. At the same time, PP-based 

downscaling decreases the correlation for some stations in western (eastern) SC 

in BCC (POAMA).  

Despite the fact that the PP-based downscaling cannot increase the 

average correlation over all stations in the other models, it can improve the 

correlation at same particular locations. For instance, CWB, GCPS, MSC-GM2, 

MSC-GM3, NIMR and MME give an improvement in the western/in-land part 

of SC, similar to POAMA. However, stations located in eastern SC see a 

reduction of the correlation after downscaling. 

To conclude, the PP-based statistical downscaling which is based on the 

observed statistical relationship between station rainfall and SLP can enhance 

the prediction skill of the seasonal rainfall at certian locations. However, as 

Carter et al. (1989) suggested, the systematic errors or biases in GCMs may limit 

the PP-based downscaling results. Therefore, another approach, namely MOS-
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based downscaling, is also studied and the results will be discussed in the next 

section. 

6.3 SVD analysis based on observed SC rainfall and model SLP. 

Similar SVD analysis was used to obtain the statistical linkage between 

the observed precipitation and model SLP in the MOS-approach. Results for the 

leading SVD mode are given in Figures 6-4 to 6-6. Figure 6-4 shows the leading 

precipitation pattern with the model SLP taken from 11 different hindcast 

models and their MME average. It is worth mentioning that most singular 

vectors of rainfall compare well with that from the observed rainfall-observed 

SLP SVD analysis (see Figure 5-8a). Among the results of the twelve different 

model datasets, nine of them have their pattern correlation with the 

aforementioned observed singular vector greater than 0.6. In particular, the 

singular vectors from MSC-GM2 and also the MME average compare very well 

with observations (with pattern correlation values over 0.9). 
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Figure 6-4. The leading singular vector for precipitation, based on SVD 

analysis between observed station precipitation and model SLP from (a) 

BCC, (b) CWB, (c) GCPS, (d) GDAPS, (e) MSC-GM2, (f) MSC-GM3, (g) 

MSC-SEF, (h) NCEP, (i) NIMR, (j) PNU, (k) POAMA, and (l) the MME 

average. Upper right of each panel shows the fraction of squared covariance 

between station precipitation and model SLP explained by this SVD mode. 
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Figure 6-5. Same as Figure 6-4 except for singular vectors for model SLP. 

From Figure 6-4, it can be seen that most (10 out of 12) models give 

strong rainfall-model SLP covariability with a pattern of surplus rainfall in 

coastal to eastern SC, and suppressed precipitation over the north-western part of 

SC. The only exceptions are NIMR and POAMA. The strong positive 

anomalous rainfall signal in east SC is missing in NIMR, while eastern/coastal to 

western/inland dipole structure of rainfall cannot be found in POAMA. The 

MME average also gives positive (negative) anomalous rainfall in 

eastern/coastal (west) SC, reflecting the associated leading rainfall pattern for 

the majority of the models. Notice that the leading SVD mode explains about 

50% or more of the squared covariance between observed rainfall and model 

SLP (with a maximum value of 77%) for all models except POAMA (which 

accounts 38% of explained squared covariance). 
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The model SLP patterns for the leading SVD mode are given in Figure 6-

5. Generally speaking, the patterns of this SVD mode are consistent with 

observations (Figure 5-8b), with most models giving a prominent low-pressure 

anomaly extending from Indochina to SCS. However, details of the SLP pattern 

vary from model to model. For example, only BCC and PNU can capture the 

positive anomalous SLP in north western SC; the positive SLP anomaly located 

over the Indian Ocean is not found in the BCC, MSC-SEF, NIMR and POAMA 

hindcasts. Furthermore, most models (other than GDAPS, MSC-GM2 and MSC-

SEF) encounter difficulties in capturing the positive anomalous pressure in south 

Japan/western north Pacific. Figure 6-6 gives the corresponding expansion 

coefficients for this SVD mode. The correlation between the expansion 

coefficients for station precipitation and model SLP is relatively high for all 

models (ranging from 0.57 to 0.79). 
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Figure 6-6. Normalized time series of the expansion coefficient for 

precipitation (solid line) and model SLP (dashed line) from (a) BCC, (b) 

CWB, (c) GCPS, (d) GDAPS, (e) MSC-GM2, (f) MSC-GM3, (g) MSC-SEF, 

(h) NCEP, (i) NIMR, (j) PNU, (k) POAMA, and (l) the MME average, 

corresponding to the leading SVD mode. Upper right of each panel shows 

the correlation between the two time series. 
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Figure 6-7. Same as Figure 6-4, except for the 2
nd

 SVD mode. 
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Figure 6-8. Same as Figure 6-5, except for the 2
nd

 SVD mode. 

The rainfall patterns for the second SVD modes are shown in Figures 6-7 

to 6-9. We found that BCC, GDAPS, MSC-GM3 and MME average are 

consistent with observations (see Figure 5-9a); the pattern correlation 

coefficients between these singular vectors and that based on observed rainfall 

and observed SLP for the 2
nd

 SVD mode are over 0.5. From Figure 6-7, it can be 

seen that most of the precipitation patterns indicate drier-than-normal conditions 

within the whole SC, except CWB, GCPS, MSC-GM2 and POAMA. For CWB 

and MSC-GM2 (GCPS and POAMA), positive anomalous rainfall is found over 

the northern (western) SC. The MME average gives negative anomalous rainfall 

in SC, reflecting the rainfall singular vector from a majority of models. From the 

anomalous SLP for this mode, it can be seen that most models can capture a 

relative large-scale anomalous high over the Indochina and SC (Figure 6-8). The 

corresponding expansion coefficients for this mode are given in Figure 6-9. 
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Moderately high correlation (from 0.51 to 0.79) between the expansion 

coefficients of station precipitation and model SLP is found for all models. 

 

Figure 6-9. Same as Figure 6-6, except for the 2
nd

 SVD mode. 
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Figure 6-10. Same as Figure 6-4, except for the 3
rd

 SVD mode. 
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Figure 6-11. Same as Figure 6-5, except for the 3
rd

 SVD mode. 

Figures 6-10 to 6-12 show the results for the third SVD mode. 

Precipitation patterns (exclusive of MSC-GM2, MSC-GM3 and POAMA) give a 

northeast-southwest dipole as in observations. The northeast-southwest dipole 

pattern is consistent with the regional-scale negative anomalous SLP (Figure 6-

10). However, it seems that the regional-scale negative SLP anomalies over 

Taiwan are shifted northward (eastward) in BCC and CWB, (MSC-SEF and 

PNU), and displaced westward (southward) in GDAPS (NCEP). For those 

models without a northeast-southwest dipole rainfall pattern, the regional-scale 

negative SLP signal over the western tip of the subtropical high cannot be 

captured (Figure 6-11). The correlation between the expansion coefficients of 

the station precipitation and SLP is again relatively high (about 0.60 to 0.82). 
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Figure 6-12. Same as Figure 6-6, except for the 3
rd

 SVD mode. 

The same SVD analysis was repeated but based on the observed rainfall 

and Z500 from models. For the leading SVD mode, the singular vectors for 

rainfall show some similarity to the previous result using model SLP (figures not 

shown). The correlation between the expansion coefficients of the station 

precipitation and Z500 is moderately high for all models (ranging from 0.59 to 
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0.72), but less than their counterparts using SLP for 11 out of 12 models. In 

addition, the 2
nd

 and 3
rd

 singular vectors based on model Z500 do not resemble 

those from the rainfall-observed Z500 analysis (figures not shown).  

Overall, a broad agreement is seen between SVD analysis results based 

on station rainfall and observed SLP, and those by replacing the observed with 

model SLP. For instance, most model SLP patterns for the leading mode are 

consistent with that from observations, with negative anomalies covering 

Indochina to SCS. Moreover, the correlation between the expansion coefficients 

of station precipitation and model SLP is relatively high for all models for the 

first 3 leading SVD modes. This indicates that the large-scale circulation 

variability in models is also linked to that in the observed station precipitation. 

Finally, based on similar SVD analysis, it was found that the observed rainfall-

model Z500 coupling is not as strong as that for the model SLP. The strong 

rainfall-SLP linkage will be exploited to construct a statistical prediction scheme 

for SC rainfall, with model SLP outputs as the predictor.  
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6.4 Predictions based on statistical downscaling (MOS) 

 

Figure 6-13. Same as Figure 6-1 except for predictions based on MOS-type 

statistical downscaling. 
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Following the MOS-based downscaling scheme outlined in section 4.2, 

the station-scale rainfall in SC was predicted with model SLP as predictor. Here 

the downscaled rainfall predictions were produced and validated based on a 

“leave-one-out” cross validation framework. Figure 6-13 shows the cross-

validated correlation coefficient between the MOS-based downscaling 

predictions and the station observations, with the correlation coefficient 

averaged over all stations indicated at the bottom right of each panel. It can be 

seen that, statistical downscaling performs better than DMO in many locations 

for most models, especially for BCC and CWB. DMO gives the maximum 

correlation coefficient of just below 0.3 (see Figures 6-1a and 6-1b); 

downscaling can increase its value to ~0.6 to 0.7. For MSC-GM2, MSC-SEF 

and GDAPS, there is an improvement in west SC, with the correlation 

coefficient reaching 0.6. A similar improvement in the north-western part of SC 

is also seen in the GCPS, NIMR, PNU, MSC-GM3, POAMA and the MME 

mean hindcasts whereas the enhancement of the prediction skill is observed in 

the eastern part of SC in BCC and NCEP. 

Meanwhile, stations with negative correlation are still found in central 

SC in BCC, GDAPS, MSC-GM3, NCEP, POAMA and MME. It indicates that 

MOS-based downscaling has some limitations in predicting SC rainfall in such a 

region. More work needs to be done to investigate the limitations and the 

reasons behind. 
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Figure 6-14. Difference between Figures 6-1 and 6-13. 
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The difference between the correlation coefficients given by DMO and 

those from MOS-based statistical downscaling is shown in Figure 6-14. Despite 

MOS-based statistical downscaling decreasing the SC rainfall prediction skill in 

central SC, this statistical downscaling scheme still brings remarkable 

improvement (which difference passing the 90% significance level) in many 

locations, especially for BCC, CWB, MSC-GM2 and POAMA. Moreover, the 

89-stations averaged correlation for these models is also increased after 

downscaling. Some models such as GDAPS, MSC-SEF, NCEP and NIMR give 

an improvement at some locations while the average correlation over all stations 

decreases slightly.  

The MME average shows a similar result with improvement found in 

western part of SC. Meanwhile, MOS-based rainfall prediction in coastal SC 

cannot be improved or even worse than DMO. Those correlation differences 

agree with the results obtained from the PP-based downscaling. Based on the 

above results, it can be inferred that improvement of the prediction skill due to 

statistical downscaling scheme is mainly found in two separate regions, namely 

the western and eastern part of SC. That is consistent with the previous studies 

showing the impressive improvement in the prediction skills at the locations 

where DMO performs poorly [Chen et al., 2012]. On average, the positive 

impact of the statistical downscaling for single-model is larger than that for the 

MME average.  
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6.5 Improvement in seasonal rainfall variation prediction 

Base on the previous section, the improvement due to statistical 

downscaling is mainly found in two separate regions, and for two different 

groups of models. The first group of models is referred to as Type 1 models; for 

CWB, GCPS, GDAPS, MSC-GM2, MSC-GM3, MSC-SEF, NIMR PNU and 

POAMA, the rainfall prediction over the western part of SC is improved 

significantly by downscaling. The second group of models is referred to as Type 

2 models; for BCC, NCEP and POAMA, the prediction skill is increased in the 

eastern and coastal part of SC. Notice that POAMA is classified as both Type 1 

and Type 2 model, meaning that its prediction skill is improved in both regions. 

According to this classification, the ensembles comprising Type 1 and Type 2 

models were computed, and the respective rainfall prediction based on DMO 

and statistical downscaling were also compared. 

  Improvement in Models 

Type 1 

Model 
Western part of SC 

CWB, GCPS, MSC-GM2, MSC-GM3, 

MSC-SEF, NIMR, PNU, POAMA 

Type 2 

Model 

Eastern & Coastal part 

of SC 
BCC, NCEP, POAMA 

Table 6-1. Summary of the Type 1 and Type 2 model. 

Figures 6-15a and 6-15b show the difference between the correlation 

coefficients for the Type 1 and Type 2 models ensembles based on downscaling 

and DMO. It is obvious that rainfall variation predictions are mainly improved 

over northwest SC for the Type 1 model ensemble average; on the other hand, 
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downscaling improves the prediction skills over the eastern coastal SC for the 

Type 2 model ensemble average, while some improvement in northwest SC can 

also be discerned.  

 

Figure 6-15. Difference between the temporal correlation coefficients (a,b) 

and the MSSS (c,d) for DMO and MOS-type downscaled precipitation for 

Type 1, and Type 2 model ensemble average, respectively.  

Besides temporal correlation coefficients, the Mean Square Skill Score 

(MSSS; WMO, 2002) is also used to assess the forecast skill of the MOS-based 

downscaling. Here, MSSS is given by the formula: 
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where MSEfor and MSEclim refer to the mean square error of the forecast and 

model climatology, respectively. MSSS is zero if the forecast error equals the 

error in the climatology. If MSSS is positive (negative), it indicates that MSEfor 

is smaller (larger) than MSEclim. Generally speaking, the MSSS values are also 

improved over the stations in northwest SC for Type 1 model ensemble and over 

east SC in the Type 2 model ensemble (Figures 6-15c and 6-15d). The results of 

temporal correlation coefficient and MSSS show that rainfall prediction based 

on downscaling can outperform DMO in different locations, depending on the 

model being considered.  

 

Figure 6-16. Geographical locations of the selected stations comprising Zone 

1 (squares) and Zone 2 (triangles). 
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To accentuate the improvement of the seasonal forecasts, results from 16 

different stations are grouped into those belonging to Zone 1 or Zone 2, which 

are located in the western and the eastern part of SC, respectively (Figure 6-16).  

 

Figure 6-17. Correlation coefficient for precipitation prediction average 

over (a) Zone 1, and (b) Zone 2, for different models, the MME average as 

well as Type 1 and Type 2 ensemble averages based on DMO (blue) and 

MOS-type statistical downscaling (red). 
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Figure 6-17 shows the correlation coefficients between the observed and 

predicted rainfall averaged over Zone 1 and Zone 2, with results from DMO in 

blue and statistical downscaling in red. By comparing the blue and red bars in 

Figure 6-17, it is seen that downscaling exhibits outstanding skills and can 

improve the prediction for most models (except PNU). Consistent with the 

previous results, DMO of Type 1 (Type 2) model shows almost no skill for 

rainfall prediction in Zone 1 (Zone 2). In Zone 1, the correlation coefficient of 

MME average and of the Type 1 model ensemble average is improved by 

downscaling from 0.09 to 0.38 and from -0.2 to 0.35 respectively (Figure 6-17a). 

The result in Zone 2 is shown in Figure 6-17b. Improvement is obtained in 6 out 

of the 12 models after downscaling. Lastly, we have also compared DMO and 

downscaling predictions using MSSS. Improvement in MSSS is formed for both 

Type 1 model (from 0.04 to 0.12) and Type 2 model (from 0.02 to 0.12) after 

statistical downscaling for seasonal rainfall variation prediction in west and 

eastern-coastal SC, respectively. 

In summary, the MOS-based downscaling scheme for prediction of 

seasonal rainfall variation in SC is evaluated, improving the prediction skill of 

the GCMs in different locations. For Type 1 models (CWB, GCPS, GDAPS, 

MSC-GM2, MSC-GM3, MSC-SEF, NIMR, PNU and POAMA) downscaling 

can improve predictions over west SC significantly, while for Type 2 models 

(BCC, NCEP and POAMA) impressive improvement is found in coast-to-

eastern SC. 
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To shed light on how statistical downscaling can give better rainfall 

prediction in certain sub regions in SC, we further examined the circulation 

features associated with the recurrent SC rainfall modes in both observations and 

model simulations. First, both the observed and DMO data are regressed upon 

the leading, second and third PC time series of SC rainfall from station 

observations obtained by EOF analysis.  

 

Figure 6-18. Regression coefficients of the JJA mean (a,b) rainfall (units: 

mm/day), and (c,d) SLP (contours, in interval of 0.05 hPa) from (a,c) 

observatioins and (b,d) Type 1 model ensemble average based on the 

leading PC of the observed SC station rainfall. 
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Figures 6-18a and 6-18b show the regression coefficients based on the 

leading PC for the observed and the Type 1 model ensemble mean rainfall. A 

cluster of strong rainfall anomalies are seen over the south-coastal part of SC in 

the regression map for observed rainfall, which agrees with the leading EOF 

(Figure 5-1a). This map resembles the second singular vector of SC rainfall, with 

negative anomalies over most locations in SC. From Figure 6-18b, even though 

the cluster of strong rainfall anomalies are shifted eastward, Type 1 model 

ensemble can broadly reproduce the suppressed rainfall pattern over SC. The 

corresponding regression coefficients for observed and model SLP are given in 

Figures 6-18c and 6-18d, respectively. It is clear that the negative anomalous 

rainfall (the leading EOF pattern) is coupled with the positive SLP anomalies at 

Hainan/Guangxi (Figure 6-18c). Similar positive SLP anomalies are also found 

in the model ensemble, albeit with a slight eastward shift (Figure 6-18d). Hence, 

DMO of the Type 1 model is capable of reproducing the rainfall variability in 

coastal SC (see Figure 6-1).  
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Figure 6-19. Same as Figure 6-16, except for the second PC.  

Figure 6-19 gives the regression maps for observations and Type 1 

model ensemble based on PC2. The observed rainfall pattern is the same as the 

second EOF (Figure 5-1b). This regression map is also similar to the leading 

singular vector of SC rainfall (see Figure 5-8a; the pattern correlation between 

the second EOF and the leading singular vector for rainfall is 0.74). In contrast, 

this rainfall pattern is not fully captured in the Type 1 model environment. 

Corresponding to the same temporal variations of the observed second PC, 

models fail to predict suppressed rainfall in many of the inland SC stations 

(Figure 6-19b). Figures 6-19c and 6-19d give the corresponding regression 

coefficients for SLP. It can be seen that the second SC rainfall mode is 
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associated with a negative centre of action in northern Bay of Bengal and the 

western north Pacific, and a positive anomaly in southwest China in 

observations (Figure 6-19c). This latter feature is consistent with the suppressed 

rainfall over the western to inland part of SC (refer to Figure 6-19a). On the 

other hand, such a positive SLP anomaly is not reproduced by the Type 1 

models ensemble (Figure 6-19d). This is consistent with the fact that the 

negative rainfall anomaly is missing in these models.  
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Figure 6-20. Same as Figure 6-16 except for regression coefficients based on 

the third PC for the observations and the Type 2 model ensemble average. 

The regression maps based on PC3 are given in Figure 6-20. By 

construction, this regression pattern for observed rainfall is same as the third 

EOF shown in Figure 5-1c. Notice that this regression map also resembles the 

third singular vector of SC rainfall (see Figure 5-10a). It shows a dipole pattern 

with positive (negative) anomalies over the northeast (southwest) SC. 

Regression using model rainfall shows that the Type 2 model ensemble has 

difficulties in capturing this rainfall pattern. In particular, models fail to predict 
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the surplus rainfall in many stations in the northeast and underestimate the 

suppressed rainfall signal in southern coastal SC (Figure 6-20b).  

From the corresponding regression coefficients for SLP (in Figures 6-20c 

and 6-20d), it can be seen that the third SC rainfall mode is associated with a 

large negative anomaly over northeast SC and SCS, and with a anomalous high 

pressure system over western SC and the western north Pacific (Figure 6-20c). 

Moreover, the corresponding regression of moisture flux shows that a 

convergent pattern over northeast SC (Figure 5-7c), thus consistent with the 

surplus rainfall over the northeast to inland part of SC (see to Figure 6-20a). 

From the Figure 6-20d, negative SLP anomalies are shifted south-eastward and 

centred at the Philippines for the Type 2 model ensemble. At the same time, a 

positive anomaly extends from the Indian Ocean to SCS covering SC. This 

feature in models is consistent with their failing in reproducing the observed 

positive rainfall pattern over northeast SC. 

To summarize, Type 1 model can well reproduce the rainfall variability 

in the south-coastal SC, thus giving a more reliable DMO prediction over this 

area, especially in Hainan Island and the Delta Pearl Region. On the other hand, 

Type 1 model (Type 2 model) shows systematic errors in the western-inland 

(eastern-coastal) area of SC, indicating DMO fails to simulate the variation of 

SC rainfall. MOS-type statistical downscaling helps to correct the models biases, 

and enhance SC rainfall prediction in these areas.  
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Chapter 7  

Summary and discussions 

 

The interannual SC summertime rainfall variability, as well as its 

predictability, has been studied by using station observations, NCEP reanalysis-

II, and model hindcast experiments from the APCC MME, during the 1983-2003 

period. A strong relationship between the SC rainfall variation and the 

anomalous large-scale circulation in Indo-Pacific region was revealed. 

Assessment of the hindcast experiments indicates that most models give low 

(moderate) prediction skill in western (eastern) SC. Finally, two different 

statistical downscaling (PP- and MOS-based) schemes were constructed and 

evaluated. Results showed that the statistical schemes could enhance the rainfall 

prediction skill at the aforementioned locations where models performance is 

poor.  

By using EOF analysis, the dominant patterns of summertime rainfall 

variation in SC were determined. Moreover, PC time series corresponding to the 

EOFs were computed. The results showed that (1) rainfall anomalies of the same 

sign over the SC region are associated with the leading EOF, with large-

amplitude signals in the southern coastal locations; (2) an east-west dipole of 

rainfall anomalies over SC are associated with the second EOF; (3) a dipole with 

northeast-to-southwest orientation is found for the third EOF.  

 In order to understand the relationship between the dominant rainfall 

patterns and the large-scale circulation, regression maps based on the first three 
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leading PC time series were computed. For the leading EOF, positive large-scale 

SLP and Z500 anomalies over Bay of Bengal and SC accompany supressed 

rainfall signal in the region (when PC1 is positive). There is also divergence of 

the vertically-integrated moisture flux anomaly associated with this mode. For 

the second EOF, large-scale negative anomalous SLP and Z500 in SCS and 

western north Pacific lead to surplus rainfall in eastern/coastal SC (when PC2 is 

positive). Meanwhile, there is also a positive regional-scale SLP anomaly in 

northwest SC consistent with the suppressed rainfall there. Convergence of 

anomalous moisture flux is also found over eastern coastal SC. The southwest-

northeast dipole rainfall pattern associated with the third EOF is consistent with 

the anomalous SLP and Z500 over northeast SC. It is found that anomalous 

moisture flux converges in the northeastern part of SC, resulting in enhance 

precipitation in the area (when PC3 is positive). 

Results from the regression analysis indicate a strong covariability 

between the local SC rainfall variation and the large-scale circulation. SVD 

analysis based on observation was further carried out to reveal the relationship 

between the rainfall variability in SC and the large-scale flow (based on SLP and 

Z500) over the Indo-Pacific region. For the leading SVD mode, positive 

(negative) rainfall anomalies in eastern-coastal (northwestern) SC are associated 

with negative (positive) anomalous SLP over Hainan and Indochina (northwest 

SC). Results using Z500 gives a similar rainfall pattern, associated with large-

scale negative anomalous Z500 over the northern Indo-Pacific region for the 

leading mode. For the 2nd SVD mode, the station with negative rainfall signals 
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over the whole SC domain is related to a positive SLP anomaly covering Bay of 

Bengal and SC. (Results for the 2nd mode based on Z500 are very similar.) For 

the 3rd SVD mode, a northeast-southwest dipole of rainfall anomaly over SC is 

consistent with a negative SLP anomaly with a centre of action over Taiwan. 

The counterpart of this mode based on Z500 gives a negative signal extending 

from the western north Pacific to Indochina. 

Results from the above SVD analysis can be used to construct a PP-based 

statistical downscaling scheme with model SLP as predictor. Compared to DMO, 

the PP-based downscaling has difficulties in improving the rainfall prediction in 

central SC whereas it improves the prediction in western SC for most models. 

For other models, improvement is found over the eastern/coastal region of SC. In 

general, the PP-based downscaling approach can enhance the prediction skill of 

summertime rainfall at the locations where DMO performs poorly. However, the 

enhancement of skill brought about by the PP-based downscaling is only modest. 

This could be related to biases in the model SLP field which is the predictor for 

PP-based downscaling.   

SVD analysis between observed precipitation and model SLP was also 

carried out, in order to unveil any covariability between observed station rainfall 

and the simulated large-scale circulation from hindcasts. Results were found to 

be similar to those using the observed SLP dataset. For the leading SVD mode, 

expansion coefficients of the station rainfall and model SLP are highly 

correlated for all models (ranging from 0.6 to 0.8). For the second and the third 

mode, there is still a strong resemblance between the corresponding singular 
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vectors from the observational and model results. Overall, these suggest a strong 

covariablity is also present between the observed SC rainfall and model SLP 

over the Indo-Pacific region from the hindcast data. The same SVD analysis was 

repeated but based on observed rainfall-model Z500. However, singular vectors 

for model Z500 bear less resemblance to their observational counterparts, 

compared to the aforementioned SVD results for SLP. 

After establishing the relationship between observed station rainfall and 

the large-scale circulation from models, a MOS-based statistical scheme for 

summertime rainfall prediction in SC was then constructed with SLP as 

predictor, based on the above SVD analysis. Results from cross-validated MOS-

based statistical downscaling were compared to those from DMO. In general, 

DMO is skilful over southern coastal locations but poorer skill is found in the 

inland region, especially over the western part of SC. Although the MOS-based 

statistical downscaling scheme decreases the prediction skill in central SC, it still 

outperforms DMO in western SC for most models; in eastern coastal SC, MOS-

based downscaling also gives better performance for some models. 

According to the areas in which MOS downscaling can improve the 

rainfall prediction, models are classified into two categories: for the Type 1 

models (including CWB, GCPS, GDAPS, MSC-GM2, MSC-GM3, MSC-SEF, 

NIMR PNU and POAMA), prediction over the western part of SC is improved 

significantly, while for the Type 2 models (including BCC, NCEP, and POAMA) 

the prediction skill is increased in eastern SC by MOS-based statistical 

downscaling. Further analysis showed that, despite models being able to 
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reproduce the basin-scale circulation patterns associated with the recurrent SC 

rainfall modes, they have difficulties in capturing regional details of the 

circulation. (1) Type 1 models have skill in reproducing the circulation in the 

western north Pacific. However, these models cannot capture the anomalous 

circulation pattern over western SC to Indochina which can be important for the 

local rainfall variation. (2) Even though the anomalous circulation can be 

captured in the Type 1 (Type 2) models, the location is shifted eastward 

(southward) to SCS (the Philippines). These features appear to be the model 

biases or the systematic errors that result in erroneous rainfall predictions. MOS 

statistical downscaling helps to correct these biases and hence improves the 

rainfall prediction. Overall, MOS-based statistical downscaling can map the 

large-scale SLP patterns on local rainfall variability, thereby tapping the source 

of predictability from the large-scale circulation signals to enhance the 

prediction skill. 

From rainfall prediction based on DMO, it was found that MME mean 

gives the highest skill score in terms of 89-station averaged correlation, 

compared to all individual models. The skill of the MME average strongly 

depends on the performance of the individual models and their variances. How 

different combinations of models can affect the performance of the MME 

average, and also the criteria of model selection for the MME mean should be 

further examined. 

In this study, the time expansion coefficients of the predictand of 

particular SVD mode are directly replaced by that of the predictor for the 
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corresponding mode while constructing the statistical downscaling scheme (i.e. 

predicted rainfall ≈ ; where Pi(x) is singular vector of predictand 

and Ri(t) is the time expansion coefficients of predictor for i
th

 SVD mode). This 

estimation is exact as long as the time expansion coefficients of predictor and 

those of the predictand are perfectly correlated. However, if they are not 

perfectly correlated, a re-estimation of the predictor time series is then necessary. 

In general, the rainfall can be estimated from  where the 

coefficients bij relate the different precipitation and SLP expansion coefficients. 

The values of [bij] can be estimated by multiple linear regressions (MLR) 

(Tippet et al., 2008). After the new predictor time series is estimated, the same 

statistical downscaling prediction is repeated, and then validated. The results 

from downscaling prediction based on the new estimates of predictor time series 

are very similar to those presented in this study for individual models. The 

method with MLR, however, gives better performance for the MME mean (see 

Tung et al., 2013). The use of different downscaling methods for, as well as the 

dependence of their skills on the different model data being used would be other 

topics for further investigations. 

We found that most models have considerable skill in capturing the 

WNPSM activity. In view of its strong linkage with the circulation over SC, it 

seems likely that WNPSM is one of the major factors determining the 

predictability of SC summertime rainfall. More work needs to be done to 
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understand the role of WNPSM on the Asian monsoon rainfall and its 

predictability.  

Hindcast experimental datasets from GCMs were utilized to construct a 

statistical downscaling scheme for SC rainfall prediction during JJA. It provides 

a good capability for studying the performance of downscaling methods. As 

compared with the model output, statistical downscaling can lead to better 

prediction skill in some locations in SC.  

Finally, the statistical downscaling prediction is obtained based on the 

statistical relationship established between the station rainfall in SC and model 

variables such as SLP, Z500 or SST. In other words, the stationarity of the 

statistical relationship is important for the success of the downscaling scheme. 

However, such relationship may experience interdecadal change in the future 

and this might affect the downscaling result (Wu et al, 2012). In order to address 

the issue of possible non-stationarity, one can make use of the most up-to-date 

historical model predictions (say for the last 30 years up to the very last year) to 

derive statistical relationships between variables using SVD analysis. By 

updating the statistical relationship based on the latest available data, one can 

minimize the impact due to (possible) decadal change of relationship between 

the local rainfall and the large-scale circulation. 
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